Một người có 10 triệu đồng gửi vào ngân hàng với kỳ hạn 3 tháng (1 quý là 3 tháng), Iãi suất 6 quý theo hình thức lãi kép (sau 3 tháng sẽ tính lãi và cộng vào gốc). Sau đúng 3 tháng, người đó lại gửi thêm 20 triệu đồng với hình thức và lãi suất như vậy. Hỏi sau 1 năm, tính từ lần gửi đầu tiên, người đó nhận được số tiền gần kết quả nào nhất?
Sau quý thứ nhất, số tiền trong tài khoản của người đó là:
\(10\left( {1 + 6\% } \right) + 20 = 30,6\) (triệu đồng) (do người đó gửi thêm vào 20 triệu đồng).
Sau quý thứ hai số tiền có trong tài khoản của người đó là:
\(30,6 + 30,6 \cdot 6\% = 30,6 \cdot \left( {1 + 6\% } \right)\) (triệu đồng).
Sau 1 năm số tiền người đó thu được là: \(30,6{\left( {1 + 6\% } \right)^3} \approx 36,445\) (triệu đồng).
Chọn C.
Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.
Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?
Cho các cân bằng hóa học sau:
Số cân bằng chuyển dịch theo chiều thuận khi tăng áp suất của hệ phản ứng là
Cho phương trình \(\cos 5x = 3m - 5.\) Gọi đoạn \[\left[ {a\,;\,\,b} \right]\] là tập hợp tất cả các giá trị của \(m\) để phương trình có nghiệm. Giá trị \(3a + b\) bằng
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right),\)trong đó \[x\] là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất là
Trong chương trình nông thôn mới, tại một xã Y có xây một cây cầu bằng bê tông như hình vẽ. Tính thể tích (đơn vị \({m^3})\) khối bê tông để đổ đủ cây cầu. (đường cong trong hình vẽ là các đường parabol)?
Xét hàm số \(f\left( x \right) = \left| {{x^2} + ax + b} \right|\), với \[a,\,\,b\] là tham số. Với \(M\) là giá trị lớn nhất của hàm số trên \(\left[ { - 1\,;\,\,3} \right].\) Khi \(M\) nhận giá trị nhỏ nhất có thể được thì \(a + 2b\) bằng
Trong không gian với hệ tọa độ \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) với \(A\left( { - 2\,;\,\,1\,;\,\,3} \right),\,\,C\left( {2\,;\,\,3\,;\,\,5} \right),\,\,B'\left( {2\,;\,\,4\,;\,\, - 1} \right),\,\,D'\left( {0\,;\,\,2\,;\,\,1} \right).\) Tọa độ điểm \[B\] là
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 10\,;\,\,10} \right]\) để hàm số \(y = \frac{1}{{m\log _3^2x - 4{{\log }_3}x + m + 3}}\) xác định trên khoảng \(\left( {0\,;\, + \infty } \right)?\)
Để khuyến khích các em học sinh tích cực học tập, cô giáo quyết định thưởng cho mỗi học sinh xếp loại thi đua tốt 2 vở và 3 bút, mỗi học sinh xếp loại thi đua khá 1 vở và 1 bút. Biết tổng số tiền mua vở là \[700\,\,000\] đồng, số tiền mua bút là \[200\,\,000\] đồng. Biết giá vở là \[10\,\,000\] đồng/quyển, bút là \[2\,\,500\] đồng/chiếc. Hỏi lớp có bao nhiêu học sinh?
Hình chóp tam giác đều \[S.ABC\] có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \(45^\circ .\) Thể tích khối chóp \[S.ABC\] theo \(a\) là
Một chiếc đu quay có bán kính \[75{\rm{ }}m,\] tâm của vòng quay ở độ cao \[90{\rm{ }}m\] (tham khảo hình vẽ). Thời gian quay hết 1 vòng của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?
Số nghiệm của phương trình \({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{\frac{1}{2}}}\left( {{2^{x + 1}} - 3} \right)\) là