Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 39

Gọi \(S\) là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số \[0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7.\] Chọn ngẫu nhiên một số từ tập \[S.\] Xác suất để số được chọn có đúng 2 chữ số chẵn là

A. \(\frac{{24}}{{35}}\). 

B. \(\frac{{144}}{{245}}\).     

C. \(\frac{{72}}{{245}}\).      

D. \(\frac{{18}}{{35}}\).

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đặt \(X = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\} \Rightarrow n\left( X \right) = 8\).

Gọi biến cố \({\rm{A}}\): "Số được chọn có đúng 2 chữ số chẵn".

Gọi số tự nhiên có 4 chữ số khác nhau lấy từ \(X\) có dạng: \(\overline {{a_1}{a_2}{a_3}{a_4}} \):

\({a_1} \in X\backslash \left\{ 0 \right\} \Rightarrow {a_1}\) có 7 cách chọn; \({a_2},\,\,{a_3},\,\,{a_4} \in X\backslash \left\{ {{a_1}} \right\} \Rightarrow {a_2},\,\,{a_3},\,\,{a_4}\) có \(A_7^3\) cách chọn.

Số phân tử không gian mẫu là: \(n(\Omega ) = 7.{\rm{A}}_7^3 = 1470\).

Tính số các được chọn có đúng 2 chữ số chẵn, kể cả chữ số 0 đứng đầu.

Chọn 2 chữ số chẵn trong bộ \[\left\{ {0\,;\,\,2\,;\,\,4\,;\,\,6} \right\}\] có \({\rm{C}}_4^2\) cách chọn.

Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.

Sau khi chọn 4 chữ số trên có \[4!\] cách xếp vị trí.

Suy ra số các số được chọn có đúng hai chữ số chẵn, kể cả chữ số 0 đứng đầu là: \(C_4^2\,.\,C_4^2\,.\,4! = 864.\)

Tính số các số được chọn có đúng 2 chữ số chẵn trong đó chữ số 0 đứng đầu.

Chọn 1 chữ số chẵn trong bộ \[\left\{ {2\,;\,\,4\,;\,\,6} \right\}\] có 3 cách chọn.

Chọn 2 chữ số lẻ còn lại trong bộ \(\left\{ {1\,;\,\,3\,;\,\,5\,;\,\,7} \right\}\) có \(C_4^2\) cách chọn.

Sau khi chọn 3 chữ số trên có \[3!\] cách xếp vị trí.

Suy ra số các số được chọn có đúng hai chữ số chẵn trong đó chữ số 0 đứng đầu là: \[3\,.\,C_4^2\,.\,3! = 108.\]

Khi đó \({\rm{n}}({\rm{A}}) = 864 - 108 = 756\) (số).

Xác suất cần tìm là: \({\rm{P}}\left( {\rm{A}} \right) = \frac{{{\rm{n}}\left( {\rm{A}} \right)}}{{{\rm{n}}\left( \Omega  \right)}} = \frac{{756}}{{1470}} = \frac{{18}}{{35}}\). Chọn D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trung tâm A chứa tối đa mỗi phòng học là 200 em học sinh. Nếu một phòng học có x học sinh thì học phí cho mỗi học sinh là \({\left( {9 - \frac{x}{{40}}} \right)^2}\) (nghìn đồng). Một buổi học thu được số tiền học phí cao nhất là bao nhiêu nghìn đồng?

Xem đáp án » 01/07/2024 148

Câu 2:

Người ta muốn xây một cái bể chứa nước dạng khối hộp chữ nhật không nắp có thể tích \(\frac{{500}}{3}\,\,\;{{\rm{m}}^3}\). Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là \[500\,\,000\] đồng\(/{{\rm{m}}^2}.\) Nếu biết xác định kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất, chi phí thấp nhất bằng bao nhiêu triệu đồng?

Xem đáp án » 01/07/2024 33

Câu 3:

Trong không gian với hệ trục tọa độ \({\rm{Oxyz}}\) cho các điểm \[{\rm{A}}\left( {0\,;\,\,1\,;\,\,2} \right),\,\,{\rm{B}}\left( {2\,;\,\, - 2\,;\,\,1} \right),\] \[{\rm{C}}\left( { - 2\,;\,\,0\,;\,\,1} \right).\] Phương trình mặt phẳng đi qua \({\rm{A}}\) và vuông góc với \({\rm{BC}}\) là

Xem đáp án » 01/07/2024 31

Câu 4:

Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge  - 1\) là

Xem đáp án » 01/07/2024 31

Câu 5:

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = 4a,\) góc giữa đường thẳng \(A'C\) và mặt phẳng \[\left( {{\rm{ABC}}} \right)\] bằng \(45^\circ \). Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng  

Xem đáp án » 01/07/2024 31

Câu 6:

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right)\) biết \({\rm{f'}}\left( {\rm{x}} \right) = {{\rm{x}}^2}{\left( {{\rm{x}} - 1} \right)^3}\left( {{{\rm{x}}^2} - 2{\rm{mx}} + {\rm{m}} + 6} \right)\). Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số đã cho có đúng một điểm cực trị?

Xem đáp án » 01/07/2024 31

Câu 7:

Cho lăng trụ \(ABC.A'B'C'\) có \(A'.ABC\) là hình chóp tam giác đều có \(AB = a,\,\,AA' = a\sqrt {\frac{7}{{12}}} \). Tính góc giữa hai mặt phẳng \(\left( {{\rm{AB}}B'A'} \right)\) và \(\left( {{\rm{ABC}}} \right)\).

Xem đáp án » 01/07/2024 31

Câu 8:

Giả sử kết quả khảo sát về diện tích khu phân bố (tính theo m2) và kích thước quần thể (tính theo số lượng cá thể) của 4 quần thể sinh vật cùng loài ở cùng một thời điểm như sau:

 

Quần thể I

Quần thể II

Quần thể III

Quần thể IV

Diện tích khu phân bố

3558

2486

1935

1954

Kích thước quần thể

4270

3730

3870

4885

Xét tại thời điểm khảo sát, mật độ cá thể của quần thể nào trong 4 quần thể trên là cao nhất?

Xem đáp án » 27/07/2024 30

Câu 9:

Trong mặt phẳng với hệ tọa độ \({\rm{Oxy,}}\) cho hai điểm \({\rm{A}}\left( {1\,;\,\,2} \right)\) và \({\rm{B}}\left( {4\,;\,\,6} \right)\). Tọa độ điểm \({\rm{M}}\) trên trục \({\rm{Oy}}\) sao cho diện tích tam giác \({\rm{MAB}}\) bằng 1 là

Xem đáp án » 01/07/2024 29

Câu 10:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,\,\,SA\] vuông góc với đáy, \({\rm{SA}} = {\rm{a}}\sqrt 2 \). Một mặt phẳng đi qua \({\rm{A}}\) vuông góc với \({\rm{SC}}\) cắt \[{\rm{SB}},\,\,{\rm{SD}},\,\,{\rm{SC}}\] lần lượt tại \(B',\,\,{\rm{D'}},\,\,C'.\) Thể tích khối chóp \({\rm{SA}}B'\,C'{\rm{D'}}\) là

Xem đáp án » 01/07/2024 29

Câu 11:

Trong không gian \({\rm{Oxyz,}}\) cho mặt phẳng \((\alpha ):3x - 2y + z + 6 = 0\). Hình chiếu vuông góc của điểm \({\rm{A}}\left( {2\,;\,\, - 1\,;\,\,0} \right)\) lên mặt phẳng \((\alpha )\) có tọa độ là \[{\rm{H}}\left( {{\rm{x}}\,;\,\,{\rm{y}}\,;\,\,{\rm{z}}} \right)\]. Tính \({\rm{T}} = {{\rm{x}}^2} + {{\rm{y}}^2} + {{\rm{z}}^2}\).

Xem đáp án » 01/07/2024 29

Câu 12:

Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{\left| x \right| + 2\left| y \right| = 3}\\{7x + 5y = 2}\end{array}} \right.\) là

Xem đáp án » 01/07/2024 28

Câu 13:

Tập hợp tất cả các giá trị thực của tham số \({\rm{m}}\) để hàm số \({\rm{y}} =  - \frac{1}{3}{{\rm{x}}^3} + {{\rm{x}}^2} - {\rm{mx}} + 1\) nghịch biến trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) là

Xem đáp án » 01/07/2024 28

Câu 14:

Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?

Xem đáp án » 01/07/2024 28

Câu 15:

Cho tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^x}dx}  = a + be\), với \(a\,,\,\,b \in \mathbb{Z}\). Tính tổng \(a + b\).

Xem đáp án » 01/07/2024 28

Câu hỏi mới nhất

Xem thêm »
Xem thêm »