Đọc đoạn trích sau đây và trả lời câu hỏi:
Không những trong bộ lịch năm ấy mà mãi mãi về sau, tấm ảnh chụp của tôi vẫn còn được treo ở nhiều nơi, nhất là trong các gia đình sành nghệ thuật. Quái lạ, tuy là ảnh đen trắng nhưng mỗi lần ngắm kĩ, tôi vẫn thấy hiện lên cái màu hồng hồng của ánh sương mai lúc bấy giờ tôi nhìn thấy từ bãi xe tăng hỏng, và nếu nhìn lâu hơn, bao giờ tôi cũng thấy người đàn bà ấy đang bước ra khỏi tấm ảnh, đó là một người đàn bà vùng biển cao lớn với những đường nét thô kệch tấm lưng áo bạc phếch có miếng vá, nửa thân dưới ướt sũng khuôn mặt rỗ đã nhợt trắng vì kéo lưới suốt đêm. Mụ bước những bước chậm rãi, bàn chân dậm trên mặt đất chắc chắn, hòa lẫn trong đám đông.
(Trích Chiếc thuyền ngoài xa – Nguyễn Minh Châu)
Vì sao khi đứng trước tấm ảnh đen trắng, Phùng vẫn thấy hiện lên cái màu hồng hồng của ánh sương mai, hình ảnh người đàn bà hàng chài?
Hình ảnh ánh nắng trong đoạn trích là hình ảnh thể hiện vẻ đẹp của nghệ thuật. Thế nhưng cái đẹp của nghệ thuật lại có bóng dáng của người đàn bà là hiện thân của giá trị hiện thực đời sống. Đây cũng chính là phát hiện thứ hai của Phùng sau phát hiện về vẻ đẹp của thiên nhiên. Nghệ thuật phải bắt nguồn từ đời sống hiện thực. Chọn D.
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Hỗn hợp X gồm 2 ester đơn chức (không chứa nhóm chức nào khác). Cho 0,08 mol X tác dụng hết với dung dịch \[AgN{O_3}/N{H_3}\]thu được 0,16 mol Ag. Mặt khác thủy phân hoàn toàn 0,08 mol X bằng dung dịch NaOH dư thu được dung dịch chứa 9,34 gam hỗn hợp 2 muối và 1,6 gam \[C{H_3}OH.\]Phần trăm khối lượng ester có phân tử khối lớn hơn trong X là
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - m} \right)\) với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số đồng biến trên \(\left( { - \infty \,;\,\, + \infty } \right)\)?
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) (1). Đường thẳng \(d:y = ax + b\) là tiếp tuyến của đồ thị hàm số (1). Biết \(d\) cắt trục hoành, trục tung lần lượt tại hai điểm \[A,\,\,B\] sao cho \(\Delta OAB\) cân tại \[O.\] Khi đó \(a + b\) bằng
Trong không gian \[Oxyz,\] cho điểm \(H\left( {1\,;\,\,2\,;\,\, - 2} \right).\) Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,\,\,Oy,\,\,Oz\] tại \[A,\,\,B,\,\,C\] sao cho H là trực tâm tam giác \[ABC.\] Phương trình mặt cầu tâm \(O\) và tiếp xúc với mặt phẳng \[\left( \alpha \right)\] là
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {2\,;\,\, - 2\,;\,\,1} \right),\,\,B\left( {0\,;\,\,1\,;\,\,2} \right).\) Tọa độ điểm \(M\) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho ba điểm \[A,\,\,B,\,\,M\] thẳng hàng là
Số nghiệm nguyên \(x\) của thoả mãn \(\left( {{3^{{x^2} - 1}} - {{27}^{x + 1}}} \right)\left[ {{{\log }_3}\left( {x + 8} \right) - 2} \right] \le 0\) là
Gọi \(S\) là diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x - 1\) và các đường thẳng \(y = m\,,\,\,x = 0\,,\,\,x = 1.\) Để \(S \le 2021\) thì có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 4040\,;\,\, - 3} \right]?\)
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \left| {{x^5} + 2{x^4} - m{x^2} + 3x - 20} \right|\) nghịch biến trên khoảng \(\left( { - \infty \,;\,\, - 2} \right)\)?
Cho khối chóp \[S.ABC\] có \(SA \bot \left( {ABC} \right)\), tam giác ABC vuông tại \(B,\) \(AC = 2a,\) \(BC = a,\)\(SB = 2a\sqrt 3 .\) Góc giữa \[SA\] và mặt phẳng \(\left( {SBC} \right)\) là