Một hạt electron với vận tốc ban đầu bằng 0, được gia tốc bằng một hiệu điện thế 400 V. Tiếp đó, nó được dẫn vào một miền từ trường với vectơ cảm ứng từ vuông góc với vectơ vận tốc của electron. Quỹ đạo của electron là một đường tròn bán kính R = 7 cm. Độ lớn cảm ứng từ là bao nhiêu?
Áp dụng định lí biến thiên động năng cho electron, ta có:
\({W_{ds}} - {W_{dt}} = A \Rightarrow \frac{1}{2}m{v^2} - 0 = \left| e \right|.U \Rightarrow v = \sqrt {\frac{{2\left| e \right|.U}}{m}} \)
Bán kính chuyển động của electron trong từ trường là:
\(R = \frac{{mv}}{{\left| e \right|B}} = \frac{{m.\sqrt {\frac{{2\left| e \right|U}}{m}} }}{{\left| e \right|.B}} = \frac{1}{B}.\sqrt {\frac{{2m.U}}{{\left| e \right|}}} \Rightarrow B = \frac{1}{R}.\sqrt {\frac{{2m.U}}{{\left| e \right|}}} \)
\( \Rightarrow B = \frac{1}{{{{7.10}^{ - 2}}}}.\sqrt {\frac{{2.9,{{1.10}^{ - 31}}.400}}{{\left| { - 1,{{6.10}^{ - 19}}} \right|}}} \approx 0,{96.10^{ - 3}}{\mkern 1mu} {\mkern 1mu} \left( T \right)\). Đáp án. \(0,{96.10^{ - 3}}{\mkern 1mu} \)
Giả sử khi một cơn sóng biển đi qua một cái cọc ở ngoài khơi, chiều cao của nước được mô hình hóa bởi hàm số \(h\left( t \right) = 90\cos \left( {\frac{\pi }{{10}}t} \right)\), trong đó \[h\left( t \right)\] là độ cao tính bằng centimét trên mực nước biển trung bình tại thời điểm \(t\) giây. Chiều cao của sóng (tức là khoảng cách theo phương thẳng đứng giữa đáy và đỉnh của sóng) bằng
Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{\sqrt {x + 2} }}{{\sqrt {{x^2} - 6x + 2m} }}\) có hai đường tiệm cận đứng. Số phần tử của \(S\) là
Hỗn hợp X gồm 2 ester đơn chức (không chứa nhóm chức nào khác). Cho 0,08 mol X tác dụng hết với dung dịch \[AgN{O_3}/N{H_3}\]thu được 0,16 mol Ag. Mặt khác thủy phân hoàn toàn 0,08 mol X bằng dung dịch NaOH dư thu được dung dịch chứa 9,34 gam hỗn hợp 2 muối và 1,6 gam \[C{H_3}OH.\]Phần trăm khối lượng ester có phân tử khối lớn hơn trong X là
Cho hàm số , với \(m\) là tham số. Gọi \({m_1},\,\,{m_2}\,\,\left( {{m_1} < {m_2}} \right)\) là các giá trị của tham số \(m\) thỏa mãn \(2{\max _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) - {\min _{\left[ {0\,;\,\,2} \right]}}f\left( x \right) = 8.\) Tổng \(2{m_1} + 3{m_2}\) bằng
Mỗi học sinh lớp 10B đều chơi bóng đá hoặc bóng chuyền. Biết rằng có 25 bạn chơi bóng đá, 20 bạn chơi bóng chuyền và 10 bạn chơi cả hai môn. Hỏi lớp 10B có bao nhiêu học sinh?
Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\) (1). Đường thẳng \(d:y = ax + b\) là tiếp tuyến của đồ thị hàm số (1). Biết \(d\) cắt trục hoành, trục tung lần lượt tại hai điểm \[A,\,\,B\] sao cho \(\Delta OAB\) cân tại \[O.\] Khi đó \(a + b\) bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Gọi \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) thỏa mãn \(F\left( {10} \right) + G\left( 1 \right) = - 11\) và \(F\left( 0 \right) + G\left( {10} \right) = 1.\) Tích phân \(\int\limits_0^{\frac{\pi }{4}} {\cos } \,2x \cdot f\left( {\sin 2x} \right)dx\) bằng
Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \left| {{x^5} + 2{x^4} - m{x^2} + 3x - 20} \right|\) nghịch biến trên khoảng \(\left( { - \infty \,;\,\, - 2} \right)\)?
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {2\,;\,\, - 2\,;\,\,1} \right),\,\,B\left( {0\,;\,\,1\,;\,\,2} \right).\) Tọa độ điểm \(M\) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho ba điểm \[A,\,\,B,\,\,M\] thẳng hàng là
Cho \[x,\,\,y\] là các số thực lớn hơn 1 thỏa mãn \({x^2} - 6{y^2} = xy.\) Tính \(M = \frac{{1 + {{\log }_{12}}x + {{\log }_{12}}y}}{{2{{\log }_{12}}\left( {x + 3y} \right)}}.\)
Gọi \(S\) là diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x - 1\) và các đường thẳng \(y = m\,,\,\,x = 0\,,\,\,x = 1.\) Để \(S \le 2021\) thì có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 4040\,;\,\, - 3} \right]?\)
Trong không gian \[Oxyz,\] cho điểm \(H\left( {1\,;\,\,2\,;\,\, - 2} \right).\) Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,\,\,Oy,\,\,Oz\] tại \[A,\,\,B,\,\,C\] sao cho H là trực tâm tam giác \[ABC.\] Phương trình mặt cầu tâm \(O\) và tiếp xúc với mặt phẳng \[\left( \alpha \right)\] là
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {2\,;\,\, - 2\,;\,\,6} \right),\,\,B\left( {3\,;\,\,3\,;\,\, - 9} \right)\) và mặt phẳng \((P):2x + 2y - z - 12 = 0\). Điểm \(M\) di động trên \(\left( P \right)\) sao cho \[MA,\,\,MB\] luôn tạo với \(\left( P \right)\) các góc bằng nhau. Biết rằng điểm \(M\) luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng