Để trả lời được câu hỏi này học sinh phải nắm chắc được khái niệm về các cách thức hay còn gọi là quy tắc lập luận của đoạn văn. Trong đó, đặc điểm của quy tắc/cách thức “tổng - phân – hợp” là có câu chủ đề ở đầu đoạn “Con người lo lắng rằng khi AI trở nên phát triển hơn, chúng ta sẽ dựa vào máy tính của mình nhiều đến mức cuối cùng sẽ coi chúng là bạn và không thể hoạt động nếu không có chúng.” và câu khái quát, nâng cao ý ở cuối đoạn “Nhưng có lẽ một trong những hệ quả sâu xa nhất của nó sẽ là khiến chúng ta phải trân trọng những điều con người nhất trong ta”. Đọc kĩ đoạn văn (2) học sinh sẽ nhận ra đặc điểm đó. Chọn C.
Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.
Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?
Cho các cân bằng hóa học sau:
Số cân bằng chuyển dịch theo chiều thuận khi tăng áp suất của hệ phản ứng là
Cho phương trình \(\cos 5x = 3m - 5.\) Gọi đoạn \[\left[ {a\,;\,\,b} \right]\] là tập hợp tất cả các giá trị của \(m\) để phương trình có nghiệm. Giá trị \(3a + b\) bằng
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right),\)trong đó \[x\] là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất là
Trong chương trình nông thôn mới, tại một xã Y có xây một cây cầu bằng bê tông như hình vẽ. Tính thể tích (đơn vị \({m^3})\) khối bê tông để đổ đủ cây cầu. (đường cong trong hình vẽ là các đường parabol)?
Xét hàm số \(f\left( x \right) = \left| {{x^2} + ax + b} \right|\), với \[a,\,\,b\] là tham số. Với \(M\) là giá trị lớn nhất của hàm số trên \(\left[ { - 1\,;\,\,3} \right].\) Khi \(M\) nhận giá trị nhỏ nhất có thể được thì \(a + 2b\) bằng
Trong không gian với hệ tọa độ \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) với \(A\left( { - 2\,;\,\,1\,;\,\,3} \right),\,\,C\left( {2\,;\,\,3\,;\,\,5} \right),\,\,B'\left( {2\,;\,\,4\,;\,\, - 1} \right),\,\,D'\left( {0\,;\,\,2\,;\,\,1} \right).\) Tọa độ điểm \[B\] là
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 10\,;\,\,10} \right]\) để hàm số \(y = \frac{1}{{m\log _3^2x - 4{{\log }_3}x + m + 3}}\) xác định trên khoảng \(\left( {0\,;\, + \infty } \right)?\)
Để khuyến khích các em học sinh tích cực học tập, cô giáo quyết định thưởng cho mỗi học sinh xếp loại thi đua tốt 2 vở và 3 bút, mỗi học sinh xếp loại thi đua khá 1 vở và 1 bút. Biết tổng số tiền mua vở là \[700\,\,000\] đồng, số tiền mua bút là \[200\,\,000\] đồng. Biết giá vở là \[10\,\,000\] đồng/quyển, bút là \[2\,\,500\] đồng/chiếc. Hỏi lớp có bao nhiêu học sinh?
Hình chóp tam giác đều \[S.ABC\] có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \(45^\circ .\) Thể tích khối chóp \[S.ABC\] theo \(a\) là
Một chiếc đu quay có bán kính \[75{\rm{ }}m,\] tâm của vòng quay ở độ cao \[90{\rm{ }}m\] (tham khảo hình vẽ). Thời gian quay hết 1 vòng của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?
Số nghiệm của phương trình \({\log _2}\left( {{4^x} + 4} \right) = x - {\log _{\frac{1}{2}}}\left( {{2^{x + 1}} - 3} \right)\) là
Một lớp học sinh có 40 học sinh, trong đó có 25 nam và 15 nữ. Giáo viên cần chọn 3 học sinh tham gia vệ sinh công cộng toàn trường. Hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?