Cho cơ hệ như hình vẽ: lò xo có độ cứng k = 100 N/m, vật nặng khối lượng m = 100 g bề mặt chỉ có ma sát trên đoạn CD, biết CD = 1 cm và \[{\rm{\mu }} = 0,5.\] Ban đầu vật nặng nằm tại vị trí lò xo không biến dạng, truyền cho vật vận tốc ban đầu \({{\rm{v}}_0} = 60{\rm{\pi }}\)cm/s dọc theo trục của lò xo hướng theo chiều lò xo giãn. Lấy g = 10 m/s2. Tốc độ trung bình của vật nặng kể từ thời điểm ban đầu đến khi nó đổi chiều chuyển động lần thứ nhất có giá trị bằng bao nhiêu cm/s? Làm tròn đến phần nguyên.
Ta có: \({\rm{k}} = 100\;{\rm{N}}/{\rm{m}};{\rm{m}} = 100\;{\rm{g}},\omega = \sqrt {\frac{{\rm{k}}}{{\rm{m}}}} = \sqrt {\frac{{100}}{{\left( {100 \cdot {{10}^{ - 3}}} \right)}}} = 10\pi {\rm{rad}}/{\rm{s}} \to {\rm{T}} = 0,2\;{\rm{s}}\).
Chuyển động của vật kể từ thời điểm ban đầu đến lúc nó đổi chiều chuyển động lần đầu tiên được chia thành các giai đoạn sau:
Giai đoạn 1: Chuyển động từ O đến C có:
\({{\rm{A}}_1} = \frac{{{{\rm{v}}_0}}}{{\rm{\omega }}} = \frac{{60{\rm{\pi }}}}{{10{\rm{\pi }}}} = 6\;{\rm{cm}},{{\rm{t}}_1} = \frac{{\rm{T}}}{{12}} = \frac{{0,2}}{{12}} = \frac{1}{{60}}\;{\rm{s}},{{\rm{v}}_{\rm{C}}} = \frac{{\sqrt 3 }}{2}{{\rm{v}}_0} = \frac{{\sqrt 3 }}{2}.(60{\rm{\pi }}) = 30\sqrt 3 {\rm{\pi cm}}/{\rm{s}}\).
Giai đoạn 2: Chuyển động từ C đến D là dao động điều hòa chịu thêm tác dụng của ma sát có độ lớn không đổi.
Vị trí cân bằng mới lệch khỏi O theo hướng lò xo bị nén một đoạn
\[\Delta {\ell _0} = \frac{{{\rm{\mu mg}}}}{{\rm{k}}} = \frac{{0,5){{.100.10}^{ - 3}}.10}}{{100}} = 0,5\;{\rm{cm}}\]
\( \to {{\rm{A}}_2} = \sqrt {{{\left( {\Delta {\ell _0} + {\rm{OC}}} \right)}^2} + {{\left( {\frac{{{{\rm{v}}_{\rm{C}}}}}{{\rm{\omega }}}} \right)}^2}} = \sqrt {{{(0,5 + 3)}^2} + {{\left( {\frac{{30\sqrt 3 {\rm{\pi }}}}{{10{\rm{\pi }}}}} \right)}^2}} = 6,265\;{\rm{cm}}\)
\(\Delta {{\rm{t}}_2} = \frac{{\arccos \left( {\frac{{3,5}}{{6,265}}} \right) - \arccos \left( {\frac{{4,5}}{{6,265}}} \right)}}{{{{360}^0}}} \cdot (0,2) = 6,64 \cdot {10^{ - 3}}\;{\rm{s}}\)
\({{\rm{v}}_{\rm{D}}} = {\rm{\omega }}{{\rm{A}}_2}\sqrt {\ell - {{\left( {\frac{{\Delta {\ell _0} + {\rm{OD}}}}{{{{\rm{A}}_2}}}} \right)}^2}} = (10{\rm{\pi }}).(6,265).\sqrt {1 - {{\left( {\frac{{4,5}}{{6,265}}} \right)}^2}} = 136,940\;\)cm/s.
Giai đoạn 3: Chuyển động từ D đến khi đổi chiều lần đầu tiên là dao động điều hòa quanh vị trí lò xo không biến dạng với biên độ
\({{\rm{A}}_3} = \sqrt {{\rm{O}}{{\rm{D}}^2} + {{\left( {\frac{{{{\rm{v}}_{\rm{D}}}}}{\omega }} \right)}^2}} = \sqrt {{4^2} + {{\left( {\frac{{136,940}}{{10\pi }}} \right)}^2}} = 5,916\;{\rm{cm}}\)
\({{\rm{t}}_3} = \frac{{\arccos \left( {\frac{{{\rm{OD}}}}{{{{\rm{A}}_3}}}} \right)}}{{{{360}^0}}}\;{\rm{T}} = \frac{{\arccos \left( {\frac{4}{{5,916}}} \right)}}{{{{360}^0}}} \cdot (0,2) = 0,0264\;{\rm{s}}\)
\({{\rm{v}}_{{\rm{tb}}}} = \frac{{\rm{S}}}{{\rm{t}}} = \frac{{{\rm{OC}} + {\rm{CD}} + \left( {{{\rm{A}}_3} - {\rm{OD}}} \right)}}{{{{\rm{t}}_1} + {{\rm{t}}_2} + {{\rm{t}}_3}}} = \frac{{3 + 1 + (5,916 - 4)}}{{\frac{1}{{60}} + 6,64 \cdot {{10}^{ - 3}} + 0,0264}} = 119,018\)
Đáp án. 119 .
Cho hàm số \(f\left( x \right) = 2{x^2} - 4x - 2.\) Gọi \(S\) là tống tất cả các giá trị của tham số \(m\) để hàm số \(y = g\left( x \right) = \left| {{f^2}\left( x \right) - 2f\left( x \right) + m} \right|\) đạt giá trị lớn nhất trên đoạn \(\left[ { - 1\,;\,\,3} \right]\) bằng 15. Tổng \(S\) thuộc khoảng nào sau đây?
Cho đường tròn có đường kính bằng 4 và 2 Elip lần lượt nhận 2 đường kính vuông góc với nhau của đường tròn làm trục lớn, trục bé của mỗi Elip đều bằng 1. Diện tích \[S\] phần hình phẳng ở bên trong đường tròn và bên ngoài 2 Elip (phần gạch tô màu trên hình vẽ) gần với kết quả nào nhất trong 4 kết quả dưới đây?
Tiếp tuyến với đồ thị hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 3\) tại điểm cực tiểu của đồ thị cắt đồ thị ở A, B khác tiếp điểm. Tính độ dài đoạn thẳng AB ?
Trong không gian \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) có toạ độ các điểm \(A\left( {0\,;\,\,0\,;\,\,0} \right),\)\(B\left( {a\,;\,\,0\,;\,\,0} \right)\), \(D\left( {0\,;\,\,2a\,;\,\,0} \right),\,\,A'\left( {0\,;\,\,0\,;\,\,2a} \right)\) với \(a \ne 0.\) Độ dài đoạn thẳng \(AC'\) là
Cho tập hợp \(A = \left[ {4\,;\,\,7} \right]\) và \(B = \left[ {2a + 3b - 1\,;\,\,3a - b + 5} \right]\) với \(a,\,\,b \in \mathbb{R}.\) Khi \(A = B\) thì giá trị biểu thức \(M = {a^2} + {b^2}\) bằng
Đọc đoạn trích sau và trả lời câu hỏi:
Với một đám ma theo cả lối Ta, Tàu, Tây, có kiệu bát cống, lợn quay đi lọng, cho đến lốc bốc xoảng và bú-dích, và vòng hoa, có đến ba trăm câu đối, vài trăm người đi đưa, lại có cậu tú Tân chỉ huy, những nhà tài tử chụp ảnh đã thi nhau như ở hội chợ. Thật là một đám ma to tát có thể làm cho người chết nằm trong quan tài cũng phải mỉm cười sung sướng, nếu không gật gù cái đầu...!
(Hạnh phúc của một tang gia – Vũ Trọng Phụng)
Phương thức biểu đạt của đoạn trích là gì?
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{\sin x}}{{1 + 3\cos x}}\) và \(F\left( {\frac{\pi }{2}} \right) = 2.\) Tính \(F\left( 0 \right).\)