Một loài thực vật, xét 2 cặp gen phân li độc lập, alen A quy định thân cao trội hoàn toàn so với alen a quy định thân thấp, alen B quy định khả năng chịu mặn trội hoàn toàn so với alen b quy định không có khả năng chịu mặn; cây có kiểu gen bb không có khả năng sống khi trồng trong đất ngập mặn và hạt có kiểu gen bb không nảy mầm trong đất ngập mặn. Để nghiên cứu và ứng dụng trồng rừng phòng hộ ven biển, người ta cho 2 cây (P) dị hợp 2 cặp gen giao phấn với nhau để tạo ra các cây F1 ở vườn ươm không nhiễm mặn; sau đó chọn tất cả các cây thân cao F1 đem trồng ở vùng đất ngập mặn ven biển. Các cây này giao phấn ngẫu nhiên tạo ra F2. Theo thuyết, trong tổng số cây F2 ở vùng đất này, số cây thân cao, chịu mặn chiếm tỉ lệ bao nhiêu?
Đáp án: ……….
Ta có: \({\rm{P}}:{\rm{AaBb}} \times {\rm{AaBb}} \to {{\rm{F}}_1}:(1{\rm{AA}}:2{\rm{Aa}}:1{\rm{aa}}) \times (1{\rm{BB}}:2{\rm{Bb}}:1{\rm{bb}})\).
Chọn các cây thân cao A- đem trồng ở đất ngập mặn (chỉ có các cây B- là sống được) thì tỉ lệ kiểu gen các cây sống được là: (1AA : 2Aa)×(1BB : 2Bb).
Cho các cây F1 sống được giao phấn ngẫu nhiên: (2A : 1a)×(2B : 1b)
→ Tỉ lệ kiểu gen các hạt \({{\rm{F}}_2}\) thu được là: (4AA : 4Aa : 1aa)(4BB : 4Bb : 1bb).
→ Tỉ lệ kiểu gen các cây \({{\rm{F}}_2}\) sống được ở vùng đất mặn này là: (4AA : 4Aa : 1aa)(1BB : 1Bb).
→ Trong số cây \({{\rm{F}}_2}\) sống ở vùng đất này thì cây thân cao chịu mặn A-B- chiếm tỉ lệ là \(\frac{8}{9}.\)
Đáp án: \(\frac{8}{9}.\)
Cho hàm số \(f\left( x \right) = 2{x^2} - 4x - 2.\) Gọi \(S\) là tống tất cả các giá trị của tham số \(m\) để hàm số \(y = g\left( x \right) = \left| {{f^2}\left( x \right) - 2f\left( x \right) + m} \right|\) đạt giá trị lớn nhất trên đoạn \(\left[ { - 1\,;\,\,3} \right]\) bằng 15. Tổng \(S\) thuộc khoảng nào sau đây?
Cho đường tròn có đường kính bằng 4 và 2 Elip lần lượt nhận 2 đường kính vuông góc với nhau của đường tròn làm trục lớn, trục bé của mỗi Elip đều bằng 1. Diện tích \[S\] phần hình phẳng ở bên trong đường tròn và bên ngoài 2 Elip (phần gạch tô màu trên hình vẽ) gần với kết quả nào nhất trong 4 kết quả dưới đây?
Tiếp tuyến với đồ thị hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 3\) tại điểm cực tiểu của đồ thị cắt đồ thị ở A, B khác tiếp điểm. Tính độ dài đoạn thẳng AB ?
Cho tập hợp \(A = \left[ {4\,;\,\,7} \right]\) và \(B = \left[ {2a + 3b - 1\,;\,\,3a - b + 5} \right]\) với \(a,\,\,b \in \mathbb{R}.\) Khi \(A = B\) thì giá trị biểu thức \(M = {a^2} + {b^2}\) bằng
Trong không gian \[Oxyz,\] cho hình hộp \(ABCD.A'B'C'D'\) có toạ độ các điểm \(A\left( {0\,;\,\,0\,;\,\,0} \right),\)\(B\left( {a\,;\,\,0\,;\,\,0} \right)\), \(D\left( {0\,;\,\,2a\,;\,\,0} \right),\,\,A'\left( {0\,;\,\,0\,;\,\,2a} \right)\) với \(a \ne 0.\) Độ dài đoạn thẳng \(AC'\) là
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{\sin x}}{{1 + 3\cos x}}\) và \(F\left( {\frac{\pi }{2}} \right) = 2.\) Tính \(F\left( 0 \right).\)
Đọc đoạn trích sau và trả lời câu hỏi:
Với một đám ma theo cả lối Ta, Tàu, Tây, có kiệu bát cống, lợn quay đi lọng, cho đến lốc bốc xoảng và bú-dích, và vòng hoa, có đến ba trăm câu đối, vài trăm người đi đưa, lại có cậu tú Tân chỉ huy, những nhà tài tử chụp ảnh đã thi nhau như ở hội chợ. Thật là một đám ma to tát có thể làm cho người chết nằm trong quan tài cũng phải mỉm cười sung sướng, nếu không gật gù cái đầu...!
(Hạnh phúc của một tang gia – Vũ Trọng Phụng)
Phương thức biểu đạt của đoạn trích là gì?