Đoạn trích có các dữ kiện: “Thiên nhiên đóng vai trò hết sức quan trọng đối việc học tập ở trẻ em” và “Khi tương tác với các sự vật trong tự nhiên, từ cây cối đến động vật, trẻ em được tiếp xúc với nguồn cảm hứng vô tận, từ đó phát triển về tình cảm, kĩ năng xã hội và có thêm động lực học tập”. → Vai trò của thiên nhiên đối với việc học tập và phát triển của trẻ em. Chọn A.
Trong không gian \[Oxyz,\] cho đường thẳng \(d:\frac{{x - 1}}{3} = \frac{{y + 1}}{1} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):2x + y - 2z + 2 = 0.\) Phương trình mặt cầu \(\left( S \right)\) có tâm nằm trên đường thẳng \(d\) có bán kính nhỏ nhất tiếp xúc với \(\left( P \right)\) và đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,1} \right)\) là
Cho lăng trụ đứng tam giác có độ dài các cạnh đáy là \(37\,\;{\rm{cm}}\,,\,\,3\,\;{\rm{cm}}\,,\,\,30\;\,\;{\rm{cm}}\) và biết tổng diện tích các mặt bên là \(480\;\,{\rm{c}}{{\rm{m}}^2}.\) Thể tích \[V\] của lăng trụ đó là
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 mét so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \(v\left( t \right) = 10t - {t^2}\), trong đó \(t\) (phút) là thời gian tính từ lúc bắt đầu chuyển động, \(v\left( t \right)\) được tính theo đơn vị mét/phút \(\left( {{\rm{m}}/{\rm{p}}} \right)\). Nếu như vậy thì khi bắt đầu tiếp xúc đất vận tốc \(v\) của khí cầu là
Cho hình ảnh biểu thị sự phân li của acid có dạng HX (X là các gốc acid khác nhau) như hình dưới.
Phát biểu nào dưới đây không đúng?
Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 2} \frac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}.\)
Cho hình trụ có chiều cao bằng \(6\sqrt 2 \;\,{\rm{cm}}.\) Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song \(AB\,,\,\,A'B'\) mà \(AB = A'B' = 6\;\,{\rm{cm}}\), diện tích tứ giác \(ABB'A'\) bằng \(60\,\;{\rm{c}}{{\rm{m}}^{2.}}.\) Bán kính đáy của hình trụ bằng
Một mảnh vườn hình chữ nhật có diện tích 961m2 người ta muốn mở rộng thêm 4 phần đất sao cho tạo thành hình tròn ngoại tiếp mảnh vườn. Biết tâm hình tròn trùng với tâm của hình chữ nhật. Tính diện tích nhỏ nhất của 4 phần đất được mở rộng (kết quả làm tròn đến chữ số hàng đơn vị).
Tỉnh A đưa ra nghị quyết về việc giảm biên chế công chức, viên chức hưởng lương từ ngân sách Nhà nước trong giai đoạn 5 năm từ 2020 – 2025 là \[12\% \] so với số lượng hiện có năm 2020. Giả sử tỉ lệ giảm hàng năm so với năm trước đó là như nhau. Để đạt được chỉ tiêu đề ra, tỉnh A phải thực hiện tỉ lệ giảm hàng năm tối thiểu là bao nhiêu phần trăm (làm tròn đến 1 chữ số thập phân)?
Cho hình thang \[ABCD\] có \[AB\] song song \[CD\] và \(AB = AD = BC = a\,,\,\,CD = 2a.\) Thể tích của khối tròn xoay khi quay hình thang \[ABCD\] quanh trục \[AB\] bằng
Trong không gian Oxyz, cho hai điểm \[A\left( { - 2\,;\,\,3\,;\,\,4} \right),\,\,B\left( {8\,;\,\, - 5\,;\,\,6} \right).\] Hình chiếu vuông góc của trung điểm \[I\] của đoạn AB trên mặt phẳng \(\left( {Oyz} \right)\) là điểm nào dưới đây?
Trong không gian \[Oxyz,\] cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) (\(m\) là tham số) và đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2t}\\{y = 3 + t}\\{z = 3 + 2t}\end{array}} \right..\) Biết đường thẳng \(\Delta \) cắt mặt cầu \((S)\) tại hai điểm phân biệt \[A,\,\,B\] sao cho \(AB = 8.\) Giá trị của \(m\) là
Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \(\left( {z - i} \right)\left( {z + i} \right) = 2\left( {z - 3} \right).\) Giá trị của \(z_1^2 + z_2^2\) bằng
Tìm giá trị thực của tham số \(m\) để hàm số \(y = \left( {m - 1} \right){x^4} - \left( {{m^2} - 2} \right){x^2} + 1\) đạt cực tiểu tại \(x = - 1.\)
Cho số phức \(z\) thỏa mãn \(\left| {z + 1 - 3i} \right| = 2.\) Biết tập hợp điểm biểu diễn số phức \(w = \left( {2 - i} \right)z - 3i + 5\) là một đường tròn. Tâm \(I\) và bán kính của đường tròn đó lần lượt là
Cho số phức \(z\) thỏa mãn \(\left( {2 + i} \right)\bar z + 1 - 5i = 0.\) Tính \(\left| {z + 1 - i} \right|.\)