Đọc đoạn trích sau đây và trả lời câu hỏi:
Không những trong bộ lịch năm ấy mà mãi mãi về sau, tấm ảnh chụp của tôi vẫn còn được treo ở nhiều nơi, nhất là trong các gia đình sành nghệ thuật. Quái lạ, tuy là ảnh đen trắng nhưng mỗi lần ngắm kĩ, tôi vẫn thấy hiện lên cái màu hồng hồng của ánh sương mai lúc bấy giờ tôi nhìn thấy từ bãi xe tăng hỏng, và nếu nhìn lâu hơn, bao giờ tôi cũng thấy người đàn bà ấy đang bước ra khỏi tấm ảnh, đó là một người đàn bà vùng biển cao lớn với những đường nét thô kệch, tấm lưng áo bạc phếch có miếng vá, nửa thân dưới ướt sũng, khuôn mặt rỗ đã nhợt trắng vì kéo lưới suốt đêm. Mụ bước những bước chậm rãi, bàn chân giậm trên mặt đất chắc chắn, hòa lẫn trong đám đông…
(Chiếc thuyền ngoài xa – Nguyễn Minh Châu)
“Màu hồng hồng của ánh sương mai” đó là ấn tượng đặc biệt về hiệu ứng màu sắc của Phùng lúc chụp ảnh, là niềm hân hoan khi anh phát hiện ra vẻ đẹp tuyệt đỉnh của ngoại cảnh; cũng là màu sắc thể hiện niềm tin vào tương lai của gia đình hàng chài nghèo khổ, đầy nghịch lí sống trên chiếc thuyền ấy. Chọn A.
Trong không gian \[Oxyz,\] cho đường thẳng \(d:\frac{{x - 1}}{3} = \frac{{y + 1}}{1} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):2x + y - 2z + 2 = 0.\) Phương trình mặt cầu \(\left( S \right)\) có tâm nằm trên đường thẳng \(d\) có bán kính nhỏ nhất tiếp xúc với \(\left( P \right)\) và đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,1} \right)\) là
Một mảnh vườn hình chữ nhật có diện tích 961m2 người ta muốn mở rộng thêm 4 phần đất sao cho tạo thành hình tròn ngoại tiếp mảnh vườn. Biết tâm hình tròn trùng với tâm của hình chữ nhật. Tính diện tích nhỏ nhất của 4 phần đất được mở rộng (kết quả làm tròn đến chữ số hàng đơn vị).
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 mét so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \(v\left( t \right) = 10t - {t^2}\), trong đó \(t\) (phút) là thời gian tính từ lúc bắt đầu chuyển động, \(v\left( t \right)\) được tính theo đơn vị mét/phút \(\left( {{\rm{m}}/{\rm{p}}} \right)\). Nếu như vậy thì khi bắt đầu tiếp xúc đất vận tốc \(v\) của khí cầu là
Cho lăng trụ đứng tam giác có độ dài các cạnh đáy là \(37\,\;{\rm{cm}}\,,\,\,3\,\;{\rm{cm}}\,,\,\,30\;\,\;{\rm{cm}}\) và biết tổng diện tích các mặt bên là \(480\;\,{\rm{c}}{{\rm{m}}^2}.\) Thể tích \[V\] của lăng trụ đó là
Cho hình ảnh biểu thị sự phân li của acid có dạng HX (X là các gốc acid khác nhau) như hình dưới.
Phát biểu nào dưới đây không đúng?
Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 2} \frac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}.\)
Trong không gian Oxyz, cho hai điểm \[A\left( { - 2\,;\,\,3\,;\,\,4} \right),\,\,B\left( {8\,;\,\, - 5\,;\,\,6} \right).\] Hình chiếu vuông góc của trung điểm \[I\] của đoạn AB trên mặt phẳng \(\left( {Oyz} \right)\) là điểm nào dưới đây?
Tỉnh A đưa ra nghị quyết về việc giảm biên chế công chức, viên chức hưởng lương từ ngân sách Nhà nước trong giai đoạn 5 năm từ 2020 – 2025 là \[12\% \] so với số lượng hiện có năm 2020. Giả sử tỉ lệ giảm hàng năm so với năm trước đó là như nhau. Để đạt được chỉ tiêu đề ra, tỉnh A phải thực hiện tỉ lệ giảm hàng năm tối thiểu là bao nhiêu phần trăm (làm tròn đến 1 chữ số thập phân)?
Cho hình trụ có chiều cao bằng \(6\sqrt 2 \;\,{\rm{cm}}.\) Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song \(AB\,,\,\,A'B'\) mà \(AB = A'B' = 6\;\,{\rm{cm}}\), diện tích tứ giác \(ABB'A'\) bằng \(60\,\;{\rm{c}}{{\rm{m}}^{2.}}.\) Bán kính đáy của hình trụ bằng
Cho hình thang \[ABCD\] có \[AB\] song song \[CD\] và \(AB = AD = BC = a\,,\,\,CD = 2a.\) Thể tích của khối tròn xoay khi quay hình thang \[ABCD\] quanh trục \[AB\] bằng
Trong không gian \[Oxyz,\] cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) (\(m\) là tham số) và đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2t}\\{y = 3 + t}\\{z = 3 + 2t}\end{array}} \right..\) Biết đường thẳng \(\Delta \) cắt mặt cầu \((S)\) tại hai điểm phân biệt \[A,\,\,B\] sao cho \(AB = 8.\) Giá trị của \(m\) là
Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \(\left( {z - i} \right)\left( {z + i} \right) = 2\left( {z - 3} \right).\) Giá trị của \(z_1^2 + z_2^2\) bằng
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 3}}{{x + 2}}\) đi qua giao điểm của hai đường tiệm cận của đồ thị hàm số đó?
Tìm giá trị thực của tham số \(m\) để hàm số \(y = \left( {m - 1} \right){x^4} - \left( {{m^2} - 2} \right){x^2} + 1\) đạt cực tiểu tại \(x = - 1.\)
Cho số phức \(z\) thỏa mãn \(\left| {z + 1 - 3i} \right| = 2.\) Biết tập hợp điểm biểu diễn số phức \(w = \left( {2 - i} \right)z - 3i + 5\) là một đường tròn. Tâm \(I\) và bán kính của đường tròn đó lần lượt là