IMG-LOGO

Câu hỏi:

04/09/2024 12

1) Giải phương trình, hệ phương trình sau:

a) \({x^4} - 8{x^2} - 9 = 0\).                           b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y =  - 3}\end{array}} \right.\).

2) Rút gọn biểu thức sau: \(M = 2\sqrt {9 - 4\sqrt 5 }  - \sqrt {20} .\)

Trả lời:

verified Giải bởi Vietjack

1) a) \({x^4} - 8{x^2} - 9 = 0\). Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\). Phương trình đã cho trở thành \({t^2} - 8t - 9 = 0.\)

Ta thấy \(1 - \left( { - 8} \right) + \left( { - 9} \right) = 0\) nên phương trình có 2 nghiệm \(t =  - 1\) (loại) hoặc \(t = 9\,\,\left( {{\rm{TM}}} \right).\)

Với \(t = 9\) thì \({x^2} = 9\). Do đó \(x = 3\) hoặc \(x =  - 3.\)

Vậy phương trình đã cho có nghiệm \[x =  - 3\,;\,\,x = 3.\]  

b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y =  - 3}\end{array}} \right.\). Nhân hai vế của phương trình thứ nhất với 2, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{2x + 2y = 18}\\{3x - 2y =  - 3}\end{array}} \right..\)

Cộng từng vế của phương trình mới, ta được: \[5x = 15\], tức là \[x = 3.\]

Thế \[x = 3\] vào phương trình \[x + y = 9\] ta có: \[3 + y = 9\] hay \[y = 6\].

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,6} \right)\).

2) \(M = 2\sqrt {9 - 4\sqrt 5 }  - \sqrt {20}  = 2\sqrt {{{\left( {\sqrt 5  - 2} \right)}^2}}  - \sqrt {4 \cdot 5} \)\( = 2\left| {\sqrt 5  - 2} \right| - 2\sqrt 5  = 2\sqrt 5  - 4 - 2\sqrt 5  =  - 4\).

Vậy \(M = 2\sqrt {9 - 4\sqrt 5 }  =  - 4\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm \(O\) đường kính \[AB\] và \(M\) là điểm chính giữa của cung \[AB\]. Lấy điểm \(D\) thuộc dây \(MB\,\,\left( D \right.\) khác \(M\) và \(\left. B \right).\) Tia \[AD\] cắt cung nhỏ \[BM\] tại \(N,\) tia \[AM\] cắt tia \[BN\] tại \(C.\)

1) Chứng minh: tứ giác \(CMDN\) nội tiếp được đường tròn.

2) Chứng minh: \(AM \cdot AC = AD \cdot AN.\)

3) Chứng minh: \(\widehat {MCD} = \widehat {OMB}.\)

4) Gọi \[E\] là giao điểm của tia \[AB\] và tia \[MN.\] Chứng minh: \(\widehat {DBN} = \widehat {NEB}.\)

Xem đáp án » 04/09/2024 17

Câu 2:

Cho Parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) và đường thẳng \(\left( d \right):y = x + m\) với \(m\) là tham số.

1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).

2) Tìm điều kiện của tham số \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.

Xem đáp án » 04/09/2024 12

Câu 3:

Một khu vườn hình chữ nhật có chu vi \[200{\rm{ m}}.\] Do mở rộng đường giao thông nông thôn nên chiều dài khu vườn giảm \[8{\rm{ m}}.\] Tính chiều dài và chiều rộng của khu vườn ban đầu, biết diện tích đất còn lại để trồng cây là \(2\,080\;\,{{\rm{m}}^2}\).

Xem đáp án » 04/09/2024 12

Câu 4:

Cho phương trình: \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0\). (\(m\) là tham số).

1) Tìm các giá trị của tham số \(m\) để phương trình đã cho có nghiệm bằng 2.

2) Tìm các giá trị của tham số \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện \(4{x_1} - 3{x_2} = 25\).

Xem đáp án » 04/09/2024 11

Câu hỏi mới nhất

Xem thêm »
Xem thêm »