1) Giải phương trình, hệ phương trình sau:
a) \({x^4} - 8{x^2} - 9 = 0\). b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\).
1) a) \({x^4} - 8{x^2} - 9 = 0\). Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\). Phương trình đã cho trở thành \({t^2} - 8t - 9 = 0.\)
Ta thấy \(1 - \left( { - 8} \right) + \left( { - 9} \right) = 0\) nên phương trình có 2 nghiệm \(t = - 1\) (loại) hoặc \(t = 9\,\,\left( {{\rm{TM}}} \right).\)
Với \(t = 9\) thì \({x^2} = 9\). Do đó \(x = 3\) hoặc \(x = - 3.\)
Vậy phương trình đã cho có nghiệm \[x = - 3\,;\,\,x = 3.\]
b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\). Nhân hai vế của phương trình thứ nhất với 2, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{2x + 2y = 18}\\{3x - 2y = - 3}\end{array}} \right..\)
Cộng từng vế của phương trình mới, ta được: \[5x = 15\], tức là \[x = 3.\]
Thế \[x = 3\] vào phương trình \[x + y = 9\] ta có: \[3 + y = 9\] hay \[y = 6\].
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,6} \right)\).
2) \(M = 2\sqrt {9 - 4\sqrt 5 } - \sqrt {20} = 2\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt {4 \cdot 5} \)\( = 2\left| {\sqrt 5 - 2} \right| - 2\sqrt 5 = 2\sqrt 5 - 4 - 2\sqrt 5 = - 4\).
Vậy \(M = 2\sqrt {9 - 4\sqrt 5 } = - 4\).
Cho đường tròn tâm \(O\) đường kính \[AB\] và \(M\) là điểm chính giữa của cung \[AB\]. Lấy điểm \(D\) thuộc dây \(MB\,\,\left( D \right.\) khác \(M\) và \(\left. B \right).\) Tia \[AD\] cắt cung nhỏ \[BM\] tại \(N,\) tia \[AM\] cắt tia \[BN\] tại \(C.\)
1) Chứng minh: tứ giác \(CMDN\) nội tiếp được đường tròn.
2) Chứng minh: \(AM \cdot AC = AD \cdot AN.\)
3) Chứng minh: \(\widehat {MCD} = \widehat {OMB}.\)
Cho Parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) và đường thẳng \(\left( d \right):y = x + m\) với \(m\) là tham số.
1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).
Một khu vườn hình chữ nhật có chu vi \[200{\rm{ m}}.\] Do mở rộng đường giao thông nông thôn nên chiều dài khu vườn giảm \[8{\rm{ m}}.\] Tính chiều dài và chiều rộng của khu vườn ban đầu, biết diện tích đất còn lại để trồng cây là \(2\,080\;\,{{\rm{m}}^2}\).
Cho phương trình: \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0\). (\(m\) là tham số).
1) Tìm các giá trị của tham số \(m\) để phương trình đã cho có nghiệm bằng 2.