Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Bình Dương 2024 - 2025 (Đề 15)
-
52 lượt thi
-
5 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
1) Giải phương trình, hệ phương trình sau:
a) \({x^4} - 8{x^2} - 9 = 0\). b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\).
1) a) \({x^4} - 8{x^2} - 9 = 0\). Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\). Phương trình đã cho trở thành \({t^2} - 8t - 9 = 0.\)
Ta thấy \(1 - \left( { - 8} \right) + \left( { - 9} \right) = 0\) nên phương trình có 2 nghiệm \(t = - 1\) (loại) hoặc \(t = 9\,\,\left( {{\rm{TM}}} \right).\)
Với \(t = 9\) thì \({x^2} = 9\). Do đó \(x = 3\) hoặc \(x = - 3.\)
Vậy phương trình đã cho có nghiệm \[x = - 3\,;\,\,x = 3.\]
b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\). Nhân hai vế của phương trình thứ nhất với 2, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{2x + 2y = 18}\\{3x - 2y = - 3}\end{array}} \right..\)
Cộng từng vế của phương trình mới, ta được: \[5x = 15\], tức là \[x = 3.\]
Thế \[x = 3\] vào phương trình \[x + y = 9\] ta có: \[3 + y = 9\] hay \[y = 6\].
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,6} \right)\).
2) \(M = 2\sqrt {9 - 4\sqrt 5 } - \sqrt {20} = 2\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt {4 \cdot 5} \)\( = 2\left| {\sqrt 5 - 2} \right| - 2\sqrt 5 = 2\sqrt 5 - 4 - 2\sqrt 5 = - 4\).
Vậy \(M = 2\sqrt {9 - 4\sqrt 5 } = - 4\).
Câu 2:
Cho Parabol \(\left( P \right):y = \frac{3}{4}{x^2}\) và đường thẳng \(\left( d \right):y = x + m\) với \(m\) là tham số.
1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).
1) Vẽ đồ thị của hàm số \(y = \frac{3}{4}{x^2}\).
Tập xác định \(D = \mathbb{R}\).
Bảng giá trị:
\(x\) |
\( - 2\) |
\( - 1\) |
0 |
1 |
2 |
\(y = \frac{3}{4}{x^2}\) |
3 |
\(\frac{3}{4}\) |
0 |
\(\frac{3}{4}\) |
3 |
2) Hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là nghiệm của phương trình:
\(\frac{3}{4}{x^2} = x + m\) hay \(\frac{3}{4}{x^2} - x - m = 0\).
Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình trên phải có hai nghiệm phân biệt
Hay \(\Delta = {( - 1)^2} - 4 \cdot \frac{3}{4}( - m) = 1 + 3m > 0\) hay \(m > \frac{{ - 1}}{3}\).
Vậy với \(m > \frac{{ - 1}}{3}\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt.
Câu 3:
Cho phương trình: \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0\). (\(m\) là tham số).
1) Tìm các giá trị của tham số \(m\) để phương trình đã cho có nghiệm bằng 2.
1) Để phương trình có nghiệm bằng 2, thay \(x = 2\) vào phương trình, ta được:
\({2^2} - 2\left( {m - 2} \right) \cdot 2 + {m^2} - 8 = 0\) hay \(4 - 4m + 8 + {m^2} - 8 = 0\).
Khi đó \({m^2} - 4m + 4 = 0\) hay \({\left( {m - 2} \right)^2} = 0\) nên \(m = 2\).
Vậy \(m = 2\) thì phương trình có nghiệm \(x = 2\)
2) \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0 & \left( 1 \right)\)
Ta có \[\Delta = 4{\left( {m - 2} \right)^2} - 4\left( {{m^2} - 8} \right) = 4{m^2} - 16m + 16 - 4{m^2} + 32 = - 32m + 48\].
Để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thì \[\Delta > 0\] hay \[ - 32m + 48 > 0\] nên \[m < 3.\]
Khi đó \(\left( 1 \right)\) có hai nghiệm phân biệt \[{x_1},{\rm{ }}{x_2}.\]
Áp dụng hệ thức Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2\left( {m - 2} \right)}\\{{x_1}{x_2} = {m^2} - 8}\end{array}} \right.\).
Để \(4{x_1} - 3{x_2} = 25\) thì \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25}\\{{x_1} + {x_2} = 2m - 4\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\).
Nhân hai vế của phương trình \[\left( 2 \right)\] với 4, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25 & & \left( 3 \right)}\\{4{x_1} + 4{x_2} = 8m - 16 & \left( 4 \right)}\end{array}} \right..\)
Trừ từng vế phương trình \(\left( 4 \right)\) cho \(\left( 3 \right)\) ta được: \(7{x_2} = 8m - 41\), tức là \({x_2} = \frac{{8m - 41}}{7}.\)
Thế \({x_2} = \frac{{8m - 41}}{7}\) vào phương trình \[\left( 2 \right)\] ta có: \({x_1} + \frac{{8m - 41}}{7} = 2m - 4\) hay \({x_1} = \frac{{6m + 13}}{7}.\)
Thay \({x_1} = \frac{{6m + 13}}{7}\,;\,\,{x_2} = \frac{{8m - 41}}{7}\) vào \({x_1}{x_2} = {m^2} - 8\) ta được
\(\frac{{6m + 13}}{7} \cdot \frac{{8m - 41}}{7} = {m^2} - 8\)
\(\frac{{\left( {6m + 13} \right)\left( {8m - 41} \right)}}{{49}} = {m^2} - 8\)
\[\left( {6m + 13} \right)\left( {8m - 41} \right) = 49\left( {{m^2} - 8} \right)\]
\(48{m^2} - 142m - 533 = 49{m^2} - 392\)
\({m^2} + 142m + 141 = 0\).
Ta thấy \(1 - 142 + 141 = 0\) nên phương trình có nghiệm \(m = - 1\) hoặc \(m = - 141\) (thỏa mãn \(m < 3).\)
Vậy \[m \in \left\{ { - 1\,;\,\, - 141} \right\}\] thì phương trình đã cho có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn điều kiện \(4{x_1} - 3{x_2} = 25.\)
Câu 4:
Một khu vườn hình chữ nhật có chu vi \[200{\rm{ m}}.\] Do mở rộng đường giao thông nông thôn nên chiều dài khu vườn giảm \[8{\rm{ m}}.\] Tính chiều dài và chiều rộng của khu vườn ban đầu, biết diện tích đất còn lại để trồng cây là \(2\,080\;\,{{\rm{m}}^2}\).
Gọi \[x\,\,\left( {\rm{m}} \right)\] là chiều dài ban đầu của khu vườn hình chữ nhật \[\left( {0 < x < 100} \right)\].
Khi đó nửa chu vi khu vườn hình chữ nhật là: \(200:2 = 100\,\,\left( m \right).\)
Chiều rộng ban đầu của khu vườn là \(100 - x\,\,\left( {\rm{m}} \right)\).
Chiều dài khu vườn sau khi giảm \(8\,\,{\rm{m}}\) là \(x - 8\,\,\left( {\rm{m}} \right)\).
Diện tích của khu vườn sau khi giảm là: \[\left( {x - 8} \right)\left( {100 - x} \right) = 2\,\,080\]
\[ - {x^2} + 108x - 800 = 2\,\,080\]
\[{x^2} - 108x + 2\,\,880 = 0\]
\(x = 60\) hoặc \(x = 48\).
• Với \(x = 60\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì
Chiều rộng ban đầu của khu vườn là \(100 - 60 = 40\,\,\left( {\rm{m}} \right)\) (thỏa mãn).
• Với \(x = 48\) hay chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) thì
Chiều rộng ban đầu của khu vườn là \(100 - 48 = 52\,\,\left( {\rm{m}} \right)\) (loại vì chiều dài phải lớn hơn chiều rộng).
Vậy chiều dài ban đầu của khu vườn là \(60\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(40\,\,{\rm{m}}{\rm{.}}\)
Câu 5:
Cho đường tròn tâm \(O\) đường kính \[AB\] và \(M\) là điểm chính giữa của cung \[AB\]. Lấy điểm \(D\) thuộc dây \(MB\,\,\left( D \right.\) khác \(M\) và \(\left. B \right).\) Tia \[AD\] cắt cung nhỏ \[BM\] tại \(N,\) tia \[AM\] cắt tia \[BN\] tại \(C.\)
1) Chứng minh: tứ giác \(CMDN\) nội tiếp được đường tròn.
2) Chứng minh: \(AM \cdot AC = AD \cdot AN.\)
3) Chứng minh: \(\widehat {MCD} = \widehat {OMB}.\)
1) Do \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn) nên \(\widehat {CMB} = \widehat {CND} = 90^\circ .\)
Xét tứ giác \[CMDN\] có
\[\widehat {CMD} + \widehat {CND} = 90^\circ + 90^\circ = 180^\circ .\]
Mà hai góc này ở vị trí đối diện nên tứ giác \[CMDN\] nội tiếp được trong đường tròn.
2) Xét \(\Delta AMD\) và \(\Delta ANC\) có \(\widehat {NAC}\) chung; \(\widehat {AMD} = \widehat {ANC} = 90^\circ .\)
Do đó , suy ra \(\frac{{AM}}{{AN}} = \frac{{AD}}{{AC}}\) hay \(AM \cdot AC = AN \cdot AD\).
3) Do \[ABNM\] nội tiếp \(\left( O \right)\) nên \(\widehat {BAM} + \widehat {BNM} = 180^\circ \).
Mà \(\widehat {BNM} + \widehat {CNM} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CNM} = \widehat {BAM}\).
Mà \[\widehat {CNM} = \widehat {MCD}\] (góc nội tiếp cùng chắn cung
Suy ra \(\widehat {MCD} = \widehat {OMB}\,\,\left( { = \widehat {CNM}} \right)\) hay \(\widehat {MCD} = \widehat {OMB}.\)
4) Do \[M\] là điểm chính giữa cung \[AB\] nên \(MA = MB\).
Suy ra \(\widehat {MNA} = \widehat {MAB}\) (góc nội tiếp chắn hai cung bằng nhau).
Xét \(\Delta MAN\) và \(\Delta MAE\) có \(\widehat {AME}\) chung; \(\widehat {MNA} = \widehat {MAE}\,\,({\rm{cmt}})\).
Do đó .
Suy ra \(\widehat {MAN} = \widehat {MEA}\) (hai góc tương ứng).
Mà \[\widehat {MAN} = \widehat {MBN}\] (góc nội tiếp cùng chắn nên \(\widehat {MBN} = \widehat {MEB}\).
Do đó \(\widehat {DBN} = \widehat {NEB}\) (đpcm).