IMG-LOGO

Câu hỏi:

25/09/2024 24

Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục hoành quay xung quanh Ox được tính bởi công thức

Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục hoành quay xung quanh Ox được tính bởi công thức   	 (ảnh 1)

A. \(\pi \int_0^2 {{{(\sqrt x - 2 + x)}^2}} dx.\) 

B. \(\int_0^1 x dx + \int_1^2 {{{(2 - x)}^2}} dx.\) 

C. \(\pi \int_0^1 x dx + \pi \int_1^2 {{{(2 - x)}^2}} dx.\) 

Đáp án chính xác

D. \(\pi \int_0^2 x dx + \pi \int_0^2 {{{(2 - x)}^2}} dx.\)

Trả lời:

verified Giải bởi Vietjack

\(\sqrt x = 2 - x \Leftrightarrow x = 1.V = {V_1} + {V_2}.\)

V1 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = 0,x = 1\) quay quanh trục Ox.

V2 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = 2 - x,y = 0,x = 1\) quay quanh trục Ox.

\({\rm{V}} = \pi \int_0^1 {{\rm{xdx}}} + \pi \int_1^2 {{{(2 - {\rm{x}})}^2}} {\rm{dx}}.\) Chọn C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \({\rm{a}} > {\rm{b}} > 0.\) Thể tích khối tròn xoay tạo thành khi cho elip \(\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{\;{{\rm{b}}^2}}} = 1\) quay xung quanh trục Ox là

Xem đáp án » 25/09/2024 24

Câu 2:

Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức

Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức   	 (ảnh 1)

Xem đáp án » 25/09/2024 20

Câu 3:

Cho hàm số \(y = f(x)\) liên tục trên \([a;b](a,b \in \mathbb{R},a < b).\) Gọi \(D\) là hình phẳng giới hạn bởi các đường \({\rm{y}} = {\rm{f}}({\rm{x}}),{\rm{x}} = {\rm{a}},{\rm{x}} = {\rm{b}}\) và trục hoành. Quay hình phẳng D quanh trục Ox ta được một khối tròn xoay có thể tích được tính bởi công thức 

Xem đáp án » 25/09/2024 18

Câu hỏi mới nhất

Xem thêm »
Xem thêm »