Trắc nghiệm tổng hợp ôn thi tốt nghiệp THPT môn Toán Chủ đề 2: Nguyên hàm, tích phân và ứng dụng có đáp án
DẠNG 4. MỐI LIÊN HỆ GIỮA TÍCH PHÂN VÀ THỂ TÍCH CỦA VẬT THỂ
-
177 lượt thi
-
4 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
Chọn đáp án D
Câu 2:
Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = \sqrt {\rm{x}} ,{\rm{y}} = 2 - {\rm{x}}\) và trục hoành quay xung quanh Ox được tính bởi công thức
\(\sqrt x = 2 - x \Leftrightarrow x = 1.V = {V_1} + {V_2}.\)
V1 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = 0,x = 1\) quay quanh trục Ox.
V2 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \(y = 2 - x,y = 0,x = 1\) quay quanh trục Ox.
\({\rm{V}} = \pi \int_0^1 {{\rm{xdx}}} + \pi \int_1^2 {{{(2 - {\rm{x}})}^2}} {\rm{dx}}.\) Chọn C.
Câu 3:
Thể tích khối tròn xoay khi quay hình phẳng D trong hình vẽ xung quanh trục Ox được tính bởi công thức
\(V = {V_1} - {V_2}.\)
V1 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = {\rm{f}}({\rm{x}}),{\rm{x}} = {\rm{a}},{\rm{x}} = {\rm{b}}\) quay quanh trục Ox.
V2 là thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường \({\rm{y}} = {\rm{g}}({\rm{x}}),{\rm{x}} = {\rm{a}},{\rm{x}} = {\rm{b}}\) quay quanh trục \(O{\rm{x}}.\)
\({\rm{V}} = \pi \int_{\rm{a}}^{\rm{b}} {\left( {{{({\rm{f}}({\rm{x}}))}^2} - {{({\rm{g}}({\rm{x}}))}^2}} \right)} {\rm{dx}}.\) Chọn B.
Câu 4:
Cho \({\rm{a}} > {\rm{b}} > 0.\) Thể tích khối tròn xoay tạo thành khi cho elip \(\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{\;{{\rm{b}}^2}}} = 1\) quay xung quanh trục Ox là
\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \Leftrightarrow {y^2} = {b^2}\left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right) \Leftrightarrow y = \pm b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} ,x \in [ - a;a].\)
Nhận xét: Elip nhận \({\rm{Ox}},{\rm{Oy}}\) là hai trục đối xứng.
Ta cần tính thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi các đường
\(y = b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} ,x = - a,x = a\)quay quanh trục Ox.
\(V = \pi \int_{ - a}^a {{{\left( {b\sqrt {1 - \frac{{{x^2}}}{{{a^2}}}} } \right)}^2}} dx = \pi \int_{ - a}^a {{b^2}} \left( {1 - \frac{{{x^2}}}{{{a^2}}}} \right)dx = \left. {\pi {b^2}\left( {x - \frac{{{x^3}}}{{3{a^2}}}} \right)} \right|_{ - a}^a = \frac{{4\pi }}{3}a{b^2}\)
Chọn B.