Gọi A1 là biến cố viên bi lấy ra từ hộp thứ nhất là bi xanh; A2 là biến cố viên bi lấy ra từ hộp thứ nhất là bi đỏ. Gọi B là biến cố hai viên bi được lấy ra từ hộp thứ hai có cùng màu.
Ta có:
\({\rm{P}}\left( {{\rm{A}}1} \right) = \frac{2}{3};{\rm{P}}\left( {{\rm{A}}2} \right) = \frac{1}{3};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right) = \frac{{{\rm{C}}{4^2} + {\rm{C}}{6^2}}}{{{\rm{C}}{{10}^2}}} = \frac{7}{{15}};{\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right) = \frac{{{\rm{C}}{3^2} + {\rm{C}}{7^2}}}{{{\rm{C}}{{10}^2}}} = \frac{8}{{15}}\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}1} \right){\rm{P}}\left( {{\rm{A}}1} \right) + {\rm{P}}\left( {{\rm{B}}\mid {\rm{A}}2} \right){\rm{P}}\left( {{\rm{A}}2} \right) = \frac{7}{{15}} \cdot \frac{2}{3} + \frac{8}{{15}} \cdot \frac{1}{3} = \frac{{22}}{{45}}{\rm{.}}\)Chọn D