Gọi A là biến cố 2 thẻ lấy ra từ hộp thứ nhất cùng màu đỏ; \(\overline {\rm{A}} \) là biến cố trong 2 thẻ lấy ra từ hộp thứ nhất có 1 thẻ xanh và 1 thẻ đỏ. Gọi B là biến cố 2 thẻ lấy ra lần hai cùng màu đỏ.
Ta có \({\rm{P}}({\rm{A}}) = \frac{{{\rm{C}}{5^2}}}{{{\rm{C}}{6^2}}} = \frac{2}{3};{\rm{P}}(\overline {\rm{A}} ) = \frac{1}{3};{\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{{\rm{C}}{7^2}}}{{{\rm{C}}{{11}^2}}} = \frac{{21}}{{55}};{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = \frac{{{\rm{C}}{6^2}}}{{{\rm{C}}_{11}^2}} = \frac{3}{{11}}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} ) = \frac{{21}}{{55}} \cdot \frac{2}{3} + \frac{3}{{11}} \cdot \frac{1}{3} = \frac{{19}}{{55}}.\)
Biết rằng 2 thẻ lấy ra lần hai đều có màu đỏ, xác suất để 2 thẻ lấy ra lần một cùng màu là
\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}})}} = \frac{{\frac{{21}}{{55}} \cdot \frac{2}{3}}}{{\frac{{19}}{{55}}}} = \frac{{14}}{{19}}.\) Chọn D.