Gọi A là biến cố nhân viên được chọn là nữ; \(\overline {\rm{A}} \) là biến cố nhân viên được chọn là nam. Gọi B là biến cố nhân viên hài lòng với mức lương hiện tại.
Ta có \({\rm{P}}({\rm{A}}) = 0,45;{\rm{P}}(\overline {\rm{A}} ) = 0,55;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,4;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,6.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} ) = 0,4 \cdot 0,45 + 0,6 \cdot 0,55 = 0,51\)
Biết rằng nhân viên đó hài lòng với mức lương hiện tại, xác suất nhân viên đó là nữ là
\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}})}} = \frac{{0,4 \cdot 0,45}}{{0,51}} = \frac{6}{{17}}.\) Chọn D.