Cho hệ phương trình \[\left\{ \begin{array}{l} - x - 3y = 2\\5x + 9y = - 11\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(x\) theo \(y)\), ta được phương trình ẩn \(y\) là
Đáp án đúng là: C
Ta có: \[\left\{ \begin{array}{l} - x - 3y = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\5x + 9y = - 11\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (1), ta có: \[x = - 3y - 2\] (3)
Thế (3) vào phương trình (2), ta được:
\[5 \cdot \left( { - 3y - 2} \right) + 9y = - 11\]
\[ - 15y - 10 + 9y = - 11\]
\[ - 6y = - 1.\]
Vậy ta chọn phương án C.
I. Nhân biết
III. Vận dụng
II. Thông hiểu
Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau?
Để giải hệ phương trình \[\left\{ \begin{array}{l}x - 7y = 9\\3x - 5y = 6\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím: