Đáp án đúng là: B
Với \[m = 1,\] hệ phương trình trở thành: \[\left\{ \begin{array}{l}x - 7y = 1\\ - x + 2y = 9\end{array} \right.\] (I)
Cách 1. ⦁ Thay \[x = 13,y = 2\] vào từng phương trình trong hệ (I), ta được:
\[13 - 7 \cdot 2 = - 1 \ne 1.\]
\[ - 13 + 2 \cdot 2 = - 9 \ne 9.\]
Do đó cặp số \[\left( {13;2} \right)\] không là nghiệm của hệ (I).
⦁ Tương tự như vậy, ta thu được các cặp số \[\left( {13; - 2} \right),\left( {2; - 13} \right)\] không là nghiệm của hệ (I).
⦁ Thay \[x = - 13,y = - 2\] vào từng phương trình trong hệ (I), ta được:
\[ - 13 - 7 \cdot \left( { - 2} \right) = 1\] (đúng);
\[ - \left( { - 13} \right) + 2 \cdot \left( { - 2} \right) = 9\] (đúng).
Do đó cặp số \[\left( { - 13; - 2} \right)\] là nghiệm của hệ (I).
Vì vậy khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là \[\left( { - 13; - 2} \right).\]
Cách 2. Sử dụng máy tính cầm tay, lần lượt bấm các phím
Trên màn hình hiện lên màn hình hiện ra kết quả: \(x = - 13,\) ấn thêm phím = ta nhận được kết quả \(y = - 2.\)
Do đó cặp số \[\left( { - 13; - 2} \right)\] là nghiệm của hệ (I).
Cách 3. Giải hệ phương trình:
Cộng từng vế hai phương trình của hệ (I), ta được: \( - 5y = 10,\) nên \(y = - 2.\)
Thay \(y = - 2\) vào phương trình \[x - 7y = 1,\] ta được: \(x - 7.\left( { - 2} \right) = 1,\) suy ra \(x = - 13.\)
Do đó cặp số \[\left( { - 13; - 2} \right)\] là nghiệm của hệ (I).
Vậy ta chọn phương án B.
II. Thông hiểu
Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau?
I. Nhân biết
Cho hệ phương trình \[\left\{ \begin{array}{l} - x - 3y = 2\\5x + 9y = - 11\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(x\) theo \(y)\), ta được phương trình ẩn \(y\) là
III. Vận dụng
Để giải hệ phương trình \[\left\{ \begin{array}{l}x - 7y = 9\\3x - 5y = 6\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím: