IMG-LOGO

Câu hỏi:

28/10/2024 15

Cho hệ phương trình \(\left\{ \begin{array}{l}x - my = 1\\mx + y = 3\end{array} \right.\) với \(m\) là tham số và \(\left( {{x_0};\,\,{y_0}} \right)\) là nghiệm của hệ phương trình. Giá trị của biểu thức \(P = x_0^2 + y_0^2 - {x_0} - 3{y_0}\) là 

A. \(P = - 1\). 

B. \(P = 0\).

Đáp án chính xác

C. \(P = 1\). 

D. \(P = 2\).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Xét phương trình \(\left\{ \begin{array}{l}x - my = 1\,\,\,\,\left( 1 \right)\\mx + y = 3\,\,\,\left( 2 \right)\end{array} \right.\)

Từ phương trình (1), ta có: \(x = my + 1.\,\,\,\left( 3 \right)\)

Thế phương trình (3) vào phương trình (2), ta được:

\(m\left( {my + 1} \right) + y = 3\)

\({m^2}y + m + y = 3\)

\(\left( {{m^2} + 1} \right)y = 3 - m\)

\(y = \frac{{3 - m}}{{{m^2} + 1}}\) (do \({m^2} + 1 \ne 0)\)

Thay \(y = \frac{{3 - m}}{{{m^2} + 1}}\) vào phương trình (3), ta được:

\(x = m \cdot \frac{{3 - m}}{{{m^2} + 1}} + 1 = \frac{{3m - {m^2} + {m^2} + 1}}{{{m^2} + 1}} = \frac{{3m + 1}}{{{m^2} + 1}}.\)

Như vậy, hệ phương trình đã cho có nghiệm là \(\left( {{x_0};\,\,{y_0}} \right) = \left( {\frac{{3m + 1}}{{{m^2} + 1}};\,\,\frac{{3 - m}}{{{m^2} + 1}}} \right)\).

Ta có: \(P = x_0^2 + y_0^2 - {x_0} - 3{y_0} = {\left( {\frac{{3m + 1}}{{{m^2} + 1}}} \right)^2} + {\left( {\frac{{3 - m}}{{{m^2} + 1}}} \right)^2} - \frac{{3m + 1}}{{{m^2} + 1}} - 3 \cdot \frac{{3 - m}}{{{m^2} + 1}}\)

\[ = \frac{{{{\left( {3m + 1} \right)}^2} + {{\left( {3 - m} \right)}^2} - \left( {3m + 1} \right)\left( {{m^2} + 1} \right) - 3\left( {3 - m} \right)\left( {{m^2} + 1} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]

\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - \left( {3{m^3} + 3m + {m^2} + 1} \right) - \left( {9{m^2} + 9 - 3{m^3} - 3m} \right)}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]

\[ = \frac{{9{m^2} + 6m + 1 + 9 - 6m + {m^2} - 3{m^3} - 3m - {m^2} - 1 - 9{m^2} - 9 + 3{m^3} + 3m}}{{{{\left( {{m^2} + 1} \right)}^2}}}\]

\[ = \frac{0}{{{{\left( {{m^2} + 1} \right)}^2}}} = 0.\]

Vậy \(P = 0,\) ta chọn phương án B.

 

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hệ phương trình \[\left\{ \begin{array}{l}x - 7y = m\\ - mx + 2y = 9\end{array} \right..\] Khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là 

Xem đáp án » 28/10/2024 17

Câu 2:

Hai ngăn của một kệ sách có tổng cộng \[500\] cuốn sách. Nếu chuyển \[75\] cuốn sách từ ngăn thứ nhất sang ngăn thứ hai thì số sách ở ngăn thứ hai gấp \[3\] lần số sách ở ngăn thứ nhất. Khi đó số sách ở ngăn thứ nhất và ngăn thứ hai ban đầu lần lượt là 

Xem đáp án » 28/10/2024 17

Câu 3:

III. Vận dụng

Với giá trị dương nào của \[m\] thì phương trình \[2x - {\left( {m - 2} \right)^2}y = 5\] nhận cặp số \[\left( { - 10; - 1} \right)\] làm nghiệm? 

Xem đáp án » 28/10/2024 15

Câu 4:

Hệ số \[a,b\] và \[c\] tương ứng của phương trình bậc nhất hai ẩn \[ - 7x - 12 = 0\] là 

Xem đáp án » 28/10/2024 14

Câu 5:

Với giá trị nào của \[{x_0}\] để cặp số \[\left( {{x_0}; - 2} \right)\] là nghiệm của phương trình \[x - 7y = 21?\] 

Xem đáp án » 28/10/2024 14

Câu 6:

I. Nhân biết

Trong các hệ thức sau, hệ thức nào không phải là phương trình bậc nhất hai ẩn? 

Xem đáp án » 28/10/2024 13

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}2x + 9y = 10\\5y - 3x = - 6\end{array} \right.,\] hệ số \[a,b,c\] và \[a',b',c'\] của hệ phương trình theo dạng hệ hai phương trình bậc nhất một ẩn là 

Xem đáp án » 28/10/2024 13

Câu 8:

II. Thông hiểu

Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau?

Mỗi nghiệm của phương trình 7x + 0y = 4 được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau? (ảnh 1)

Xem đáp án » 28/10/2024 13

Câu 9:

Cặp số nào sau đây là nghiệm của phương trình \[3x - 2y + 1 = 0?\] 

Xem đáp án » 28/10/2024 12

Câu 10:

Cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình nào trong các hệ phương trình sau đây? 

Xem đáp án » 28/10/2024 12

Câu 11:

Cho hệ phương trình \[\left\{ \begin{array}{l} - x - 3y = 2\\5x + 9y = - 11\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(x\) theo \(y)\), ta được phương trình ẩn \(y\)

Xem đáp án » 28/10/2024 12

Câu 12:

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy + 4\\\left( {x + 2} \right)\left( {y - 1} \right) = xy - 10\end{array} \right..\] Nghiệm của hệ phương trình trên là 

Xem đáp án » 28/10/2024 12

Câu 13:

Để giải hệ phương trình \[\left\{ \begin{array}{l}x - 7y = 9\\3x - 5y = 6\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:

Xem đáp án » 28/10/2024 12

Câu 14:

Điểm \[M\left( {1;3} \right)\] không thuộc đường thẳng nào sau đây? 

Xem đáp án » 28/10/2024 11

Câu hỏi mới nhất

Xem thêm »
Xem thêm »