Với giá trị nào của \[x\] thì biểu thức \[10x - 12\] là số dương?
A. \[x > \frac{5}{6}.\]
B. \[x > \frac{6}{5}.\]
C. \[x < \frac{6}{5}.\]
D. \[x = \frac{6}{5}.\]
Đáp án đúng là: B
Ta có biểu thức \[10x - 12\] là số dương, tức là \[10x - 12 > 0.\]
Giải phương trình:
\[10x - 12 > 0\]
\[10x > 12\]
\[x > \frac{{12}}{{10}}\]
\[x > \frac{6}{5}.\]
Vậy \[x > \frac{6}{5}\] thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Một hãng taxi có giá mở cửa là 15 000 đồng và giá 12 000 đồng cho mỗi ki-lô-mét tiếp theo. Hỏi với 350 000 đồng thì hành khách có thể di chuyển được tối đa là bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị)?
II. Thông hiểu
Tổng các nghiệm của phương trình \(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\) là
Phương trình \[\left( {ax + b} \right)\left( {cx + d} \right) = 0\,\,\,\left( {a \ne 0,\,\,c \ne 0} \right)\] có nhiều nhất bao nhiêu nghiệm?
Khi nhân cả hai vế của bất đẳng thức \[ - 5x \le 45\] với \[\frac{{ - 2}}{5},\] ta được bất đẳng thức nào sau đây?
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
Có bao nhiêu số nguyên âm \[x\] thỏa mãn bất phương trình \[9x + 8 \ge 5x?\]
III. Vận dụng
Cho phương trình \[\frac{1}{{x + 1}} - \frac{{2{x^2} - m}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}.\] Biết \[x = 0\] là một nghiệm của phương trình. Nghiệm còn lại là
I. Nhận biết
Điều kiện xác định của phương trình \(\frac{1}{{{x^2} + 4}} = \frac{1}{{x - 2}}\) là
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau:
Số nghiệm của phương trình \(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\) là
Kết luận nào sau đây đúng khi nói về nghiệm của bất phương trình \[\left( {x + 3} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 9} \right) + 25?\]
Nghiệm của bất phương trình \[\frac{{87 - x}}{{15}} + \frac{{88 - x}}{{16}} + \frac{{27 + x}}{{99}} + \frac{{28 + x}}{{100}} > 4\] là