III. Vận dụng
Cho phương trình \[\frac{1}{{x + 1}} - \frac{{2{x^2} - m}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}.\] Biết \[x = 0\] là một nghiệm của phương trình. Nghiệm còn lại là
A. \[x = - 5.\]
B. \[x = 5.\]
C. \[x = 2.\]
D. \[x = - 1.\]
Đáp án đúng là: A
Với \[x = 0,\] ta có:
\[\frac{1}{{0 + 1}} - \frac{{2 \cdot {0^2} - m}}{{{0^3} + 1}} = \frac{4}{{{0^2} - 0 + 1}}.\]
\[1 - \left( { - m} \right) = 4\]
\[1 + m = 4\]
\[m = 3.\]
Với \[m = 3,\] ta có phương trình: \[\frac{1}{{x + 1}} - \frac{{2{x^2} - 3}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}\] (1)
Điều kiện xác định: \[x \ne - 1.\]
Từ (1), ta có:
\[\frac{1}{{x + 1}} - \frac{{2{x^2} - 3}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{4}{{{x^2} - x + 1}}\]
\[\frac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{2{x^2} - 3}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{4\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\]
\[{x^2} - x + 1 - \left( {2{x^2} - 3} \right) = 4\left( {x + 1} \right)\]
\[{x^2} - x + 1 - 2{x^2} + 3 = 4x + 4\]
\[ - {x^2} - 5x = 0\]
\[ - x\left( {x + 5} \right) = 0\]
\[x = 0\] hoặc \[x + 5 = 0\]
\[x = 0\] hoặc \[x = - 5.\]
Do đó phương trình (2) có hai nghiệm là \[x = 0\] và \[x = - 5.\]
Ta thấy, hai nghiệm \[x = 0\] và \[x = - 5\] đều thỏa mãn điều kiện của phương trình (1).
Vậy nghiệm còn lại của phương trình đã cho là \[x = - 5.\]
Do đó ta chọn phương án A.
II. Thông hiểu
Tổng các nghiệm của phương trình \(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\) là
Phương trình \[\left( {ax + b} \right)\left( {cx + d} \right) = 0\,\,\,\left( {a \ne 0,\,\,c \ne 0} \right)\] có nhiều nhất bao nhiêu nghiệm?
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
Số nghiệm của phương trình \(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\) là
Kết luận nào sau đây đúng khi nói về nghiệm của bất phương trình \[\left( {x + 3} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 9} \right) + 25?\]
Một hãng taxi có giá mở cửa là 15 000 đồng và giá 12 000 đồng cho mỗi ki-lô-mét tiếp theo. Hỏi với 350 000 đồng thì hành khách có thể di chuyển được tối đa là bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị)?
I. Nhận biết
Điều kiện xác định của phương trình \(\frac{1}{{{x^2} + 4}} = \frac{1}{{x - 2}}\) là
Khi nhân cả hai vế của bất đẳng thức \[ - 5x \le 45\] với \[\frac{{ - 2}}{5},\] ta được bất đẳng thức nào sau đây?
Có bao nhiêu số nguyên âm \[x\] thỏa mãn bất phương trình \[9x + 8 \ge 5x?\]
Nghiệm của bất phương trình \[\frac{{87 - x}}{{15}} + \frac{{88 - x}}{{16}} + \frac{{27 + x}}{{99}} + \frac{{28 + x}}{{100}} > 4\] là
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau: