Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
A. \[x > 27.\]
B. \[x > - 27.\]
C. \[x < - 27.\]
D. \[x < 27.\]
Đáp án đúng là: D
Ta có:
\[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\]
\[\frac{{2\left( {3x + 52} \right)}}{{20}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + \frac{{20}}{{20}}\]
\[2\left( {3x + 52} \right) > 3\left( {3x + 1} \right) + 20\]
\[6x + 104 > 9x + 3 + 20\]
\[ - 3x > - 81\]
\[x < 27\]
Vậy nghiệm của bất phương trình đã cho là \[x < 27.\]
Do đó ta chọn phương án D.
Một hãng taxi có giá mở cửa là 15 000 đồng và giá 12 000 đồng cho mỗi ki-lô-mét tiếp theo. Hỏi với 350 000 đồng thì hành khách có thể di chuyển được tối đa là bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị)?
Khi nhân cả hai vế của bất đẳng thức \[ - 5x \le 45\] với \[\frac{{ - 2}}{5},\] ta được bất đẳng thức nào sau đây?
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào ngược chiều?
Kết luận nào sau đây đúng khi nói về nghiệm của bất phương trình \[\left( {x + 3} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 9} \right) + 25?\]
III. Vận dụng
Cho \[a,b\] là các số thực dương. Khẳng định nào sau đây là đúng?
I. Nhận biết
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau:
Có bao nhiêu số nguyên âm \[x\] thỏa mãn bất phương trình \[9x + 8 \ge 5x?\]
Nghiệm của bất phương trình \[\frac{{87 - x}}{{15}} + \frac{{88 - x}}{{16}} + \frac{{27 + x}}{{99}} + \frac{{28 + x}}{{100}} > 4\] là