Một hãng taxi có giá mở cửa là 15 000 đồng và giá 12 000 đồng cho mỗi ki-lô-mét tiếp theo. Hỏi với 350 000 đồng thì hành khách có thể di chuyển được tối đa là bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị)?
A. 31 km.
B. 30 km.
C. 28 km.
D. 29 km.
Đáp án đúng là: C
Gọi \[x\] là số km mà hành khách có thể di chuyển \[\left( {x \ge 1} \right)\].
Số tiền hành khách cần trả cho 1 km đầu tiên là 15 000 đồng và số tiền hành khách trả cho \(x - 1\) (km) tiếp theo là \(12\,\,000\left( {x - 1} \right)\) (đồng).
Số tiền hành khách cần trả khi đi \(x\) (km) là \[15\,\,000 + 12\,\,000\left( {x - 1} \right)\] (đồng).
Vì hành khách chỉ có thể di chuyển với số tiền 350 000 đồng nên ta có bất phương trình
\[15\,\,000 + 12\,\,000\left( {x - 1} \right) \le 350\,\,000\]
\[15\,\,000 + 12\,\,000x - 12\,\,000 \le 350\,\,000\]
\[12\,\,000x \le 347\,\,000\]
\[x \le \frac{{347\,\,000}}{{12\,\,000}} = \frac{{347}}{{12}} \approx 28,92.\]
So với điều kiện \[x > 0,\] và số ki-lô-mét là số nguyên nên \(x = 28.\)
Vậy với 350 000 đồng thì hành khách có thể di chuyển được tối đa 28 ki-lô-mét.
Khi nhân cả hai vế của bất đẳng thức \[ - 5x \le 45\] với \[\frac{{ - 2}}{5},\] ta được bất đẳng thức nào sau đây?
Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào ngược chiều?
I. Nhận biết
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau:
Kết luận nào sau đây đúng khi nói về nghiệm của bất phương trình \[\left( {x + 3} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 9} \right) + 25?\]
Có bao nhiêu số nguyên âm \[x\] thỏa mãn bất phương trình \[9x + 8 \ge 5x?\]
III. Vận dụng
Cho \[a,b\] là các số thực dương. Khẳng định nào sau đây là đúng?
Nghiệm của bất phương trình \[\frac{{87 - x}}{{15}} + \frac{{88 - x}}{{16}} + \frac{{27 + x}}{{99}} + \frac{{28 + x}}{{100}} > 4\] là