Với ba số \(a,b,c\), ta có:
A. Nếu \(a > b\) thì \(a + c \le b + c\).
B. Nếu \(a < b\) thì \(a + c \ge b + c\).
C. Nếu \(a \le b\) thì \(a + c \le b + c\).
D. Nếu \(a \ge b\) thì \(a + c \le b + c\).
Đáp án đúng là: C
Khi cộng hai vế của một bất đẳng thức với cùng một số thì dấu của bất đẳng thức không đổi. Vì vậy nếu \(a \le b\) thì \(a + c \le b + c\).
Một tam giác có độ dài các cạnh là \[1,{\rm{ }}2,{\rm{ }}x\] (\[x\] là số nguyên). Khi đó
Cho bất đẳng thức \[a > b\] và số thực \[c > 0\]. Xác định dấu của hiệu: \[ac--bc\].
III. Vận dụng
So sánh giá trị hai biểu thức \({a^2} + {b^2} + {c^2} + {d^2}\) và \(a\left( {b + c + d + e} \right)\) với \(a,b,c,d,e\) là các só thực bất kỳ.
II. Thông hiểu
So sánh hai số \(a\) và \(b\), nếu \[a + 2024 < b + 2024\].
Cho bất đẳng thức \[a > b\] và cho số thực\[c\]. Xác định dấu của hiệu:\[\left( {a + c} \right)--\left( {b + c} \right)\] .
Cho \[a - 2 \le b - 1\]. So sánh hai biểu thức \[2a--4\] và \[2b--2\].