IMG-LOGO

Câu hỏi:

18/11/2024 21

Cho đường thẳng \(\left( d \right):\,\,y = 2x + m\) và parabol \(\left( P \right):\,\,y = {x^2}\,,\) số nguyên \(m\) nhỏ nhất để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt là

A. \(0.\)

Đáp án chính xác

B. \( - 2.\)

C. \(1.\)

D. \(1.\)

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình

\({x^2} = 2x + m\) hay \({x^2} - 2x + m = 0\,\,\,\left( 1 \right).\)

Ta có: \(\Delta ' = 1 + m\).

Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt.

Suy ra \(\Delta ' > 0\) hay \(1 + m > 0\) hay \(m > - 1.\)

Mà \(m\) là số nguyên nhỏ nhất nên \(m = 0.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ \(Oxy,\) biết điểm có hoành độ bằng 1 là một điểm chung của parabol \(y = 2{x^2}\) và đường thẳng \(y = \left( {m - 1} \right)x - 2,\) với \(m\) là tham số. Khi đó giá trị của \(m.\)

Xem đáp án » 18/11/2024 21

Câu 2:

Khoảng cách giữa hai điểm \(M\left( {{x_1};\,\,{y_1}} \right)\) và \(N\left( {{x_2};\,\,{y_2}} \right)\) được tính công thức:

\(MN = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .\)

Áp dụng: Cho parabol \(\left( P \right):\,\,y = \frac{1}{2}{x^2}\) cắt đường thẳng \(\left( d \right):\,\,y = x + \frac{3}{2}\) tại hai điểm phân biệt \(A\) và \(B.\) Độ dài đoạn thẳng \(AB\) bằng

Xem đáp án » 18/11/2024 19

Câu 3:

Điểm đối xứng với điểm \(\left( {x;y} \right)\) qua trục \(Oy\)là

Xem đáp án » 18/11/2024 15

Câu 4:

Đồ thị của hình bên dưới là đồ thị của hàm số nào trong các hàm số sau?

Đồ thị của hình bên dưới là đồ thị của hàm số nào trong các hàm số sau?  (ảnh 1)

Xem đáp án » 18/11/2024 15

Câu 5:

 

Để vẽ được đồ thị hàm số \(y = \frac{{ - 1}}{4}{x^2}\) cần xác định các điểm nào sau đây?

Xem đáp án » 18/11/2024 14

Câu 6:

Cho đồ thị của một hàm số bậc hai sau:

Cho đồ thị của một hàm số bậc hai sau:Hệ số a của đồ thị hàm số bậc hai này là (ảnh 1)

Hệ số \(a\) của đồ thị hàm số bậc hai này là

Xem đáp án » 18/11/2024 13

Câu 7:

II. Thông hiểu

Điểm nào sau đây thuộc đồ thị hàm số \(y = 3{x^2}\,?\)

Xem đáp án » 18/11/2024 13

Câu 8:

III. Vận dụng

Cho hàm số \(y = {x^2}\) có đồ thị là \(\left( P \right).\) Đường thẳng đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) và \(2\) là

Xem đáp án » 18/11/2024 13

Câu 9:

I. Nhận biết

Kết luận nào sau đây là sai khi nói về đồ thị hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)?\)

Xem đáp án » 18/11/2024 12

Câu 10:

Trong mặt phẳng tọa độ \[Oxy\], cho hàm số \(y = \left( {m + 2} \right){x^2}\) có đồ thị đi qua điểm \(\left( { - 1\,;\,\,3} \right).\) Khi đó giá trị của \[m\] tương ứng là

Xem đáp án » 18/11/2024 11

Câu 11:

Cho hàm số \(y = - 2{x^2}\) có đồ thị là \(\left( P \right).\) Tọa độ các điểm thuộc \(\left( P \right)\) có tung độ bằng \( - 6\) là

Xem đáp án » 18/11/2024 11

Câu 12:

Hàm số \(y = \left( {m + 2} \right){x^2}\) đạt giá trị nhỏ nhất khi

Xem đáp án » 18/11/2024 11

Câu hỏi mới nhất

Xem thêm »
Xem thêm »