A. \(15\) sản phẩm/giờ.
B. \(20\)sản phẩm/giờ.
Hướng dẫn giải
Đáp án đúng là: A
Gọi năng suất dự định là \(x\) (sản phẩm/giờ, \(x \in {\mathbb{N}^*}\))
Thời gian dự định làm \(70\) sản phẩm là \(\frac{{70}}{x}\) (giờ).
Thời gian thực tế làm \(80\) sản phẩm với năng suất \(x + 5\) (sản phẩm/giờ) là \(\frac{{81}}{{x + 5}}\) (giờ).
Theo đề bài, công nhân hoàn thành trước kế hoạch \(40\) phút (\( = \frac{2}{3}\) giờ).
Ta có phương trình \(\frac{{70}}{x} - \frac{{80}}{{x + 5}} = \frac{2}{3}\)
\(\frac{{35}}{x} - \frac{{40}}{{x + 5}} = \frac{1}{3}\)
\(\frac{{35.3\left( {x + 5} \right)}}{x} - \frac{{40.3.x}}{{x + 5}} = \frac{{1.x.\left( {x + 5} \right)}}{3}\)
\(105\left( {x + 5} \right) - 120x = x\left( {x + 5} \right)\)
\({x^2} + 5x - 105x - 525 + 120x = 0\)
\({x^2} + 20x - 525 = 0.\,\,\,\left( 1 \right)\)
Phương trình \(\left( 1 \right)\) có \(\Delta = {20^2} - 4.\left( { - 525} \right) = 2\,\,500 > 0\) nên phương trình có hai nghiệm phân biệt
\({x_1} = 15\) (thỏa mãn điều kiện); \({x_2} = - 35\)(không thỏa mãn điều kiện)
Vậy năng suất dự định là \(15\) sản phẩm/giờ.
Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.
Cho phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có biệt thức \(\Delta = {b^2} - 4ac.\) Phương trình đã cho có nghiệm khi
Cho phương trình \(3{x^2} + 6x + 9 = 0\). Kết luận nào sau đây đúng?
Một đội xe cần phải chuyên chở \(150\) tấn hàng. Hôm làm việc có \(5\) xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm \(5\) tấn. Nếu gọi số xe ban đầu là \(x\). Phương trình của bài toán này là
Tích các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\) là
I. Nhận biết
Phương trình nào dưới đây là phương trình bậc hai một ẩn?
Một đoàn xe vận tải nhận chuyên chở \(24\) tấn hàng. Khi sắp khởi hành thì đoàn xe được điều thêm \(6\)chiếc xe nữa nên mỗi xe lúc đó phải chởi ít hơn \(2\) tấn hàng so với dự định. Tính số xe thực tế tham gia vận chuyển (biết khối lượng hàng mỗi xe chở là như nhau).