Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

29/12/2024 4

Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng

A. \[12{\rm{\;cm}}.\]

B. \[7{\rm{\;cm}}.\]

C. \[28{\rm{\;cm}}.\]

D. \[14{\rm{\;cm}}.\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và ba điểm  A , B , C  thuộc đường tròn đó sao cho  Δ A B C  cân tại  A .  Giả sử  B C = 6 c m ,  đường cao  A M  của  Δ A B C  bằng  4 c m .  Gọi  B ′  là điểm đối xứng với  B  qua  O .  Kẻ  A H ⊥ C B ′  tại  H .  Khi đó chu vi tứ giác  A H C M  bằng (ảnh 1)

Vì \[B'\] là điểm đối xứng với \[B\] qua \[O\] và \(B \in \left( O \right)\) nên \[B' \in \left( O \right).\]

Suy ra \[OB = OB' = R\] và \(BB' = 2R.\)

Mà \[C \in \left( O \right)\] nên \[R = OC = OB = OB' = \frac{{BB'}}{2}.\]

Tam giác \[BB'C\] có \[OC\] là đường trung tuyến ứng với cạnh \(BB'\) và \[OC = \frac{{BB'}}{2}\] nên tam giác \[BB'C\] vuông tại \[C.\]

Tứ giác \[AHCM,\] có: \[\widehat {AMC} = \widehat {AHC} = \widehat {HCM} = 90^\circ \] nên tứ giác \[AHCM\] là hình chữ nhật.

Tam giác \[ABC\] cân tại \[A\] có \[AM\] là đường cao nên \[AM\] cũng là đường trung tuyến của tam giác. Do đó \[M\] là trung điểm \[BC.\] Vì vậy \[MC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]

Vậy chu vi hình chữ nhật \[AHCM\] bằng \[2 \cdot \left( {AM + MC} \right) = 2 \cdot \left( {4 + 3} \right) = 14{\rm{\;(cm)}}{\rm{.}}\]

Do đó ta chọn phương án D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

I. Nhận biết

Tâm đối xứng của đường tròn là

Xem đáp án » 29/12/2024 4

Câu 2:

Cho đường tròn \[\left( {O\,;R} \right)\] và một điểm \[G\] bất kì. Ta nói điểm \[G\] nằm trên đường tròn \[\left( {O\,;R} \right)\] nếu

Xem đáp án » 29/12/2024 4

Câu 3:

Cho hình vuông \[ABCD\] cạnh \[a.\] Khẳng định nào sau đây đúng?

Xem đáp án » 29/12/2024 4

Câu 4:

Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn?

Xem đáp án » 29/12/2024 3

Câu 5:

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[K\] bất kì. Biết rằng \[OK = 7{\rm{\;cm}}.\] Khẳng định nào sau đây đúng?

Xem đáp án » 29/12/2024 3

Câu 6:

Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là

Xem đáp án » 29/12/2024 3

Câu 7:

Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?

Xem đáp án » 29/12/2024 3

Câu 8:

Cho tam giác \[ABC\] nhọn có các đường cao \[BD,\,\,CE.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 29/12/2024 3

Câu 9:

Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?

Xem đáp án » 29/12/2024 3

Câu 10:

Cho hình vuông \[ABCD\] có \[E\] là giao điểm của hai đường chéo. Kết luận nào sau đây sai?

Xem đáp án » 29/12/2024 3

Câu 11:

Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]

Xem đáp án » 29/12/2024 3

Câu 12:

Hình tròn tâm \[O\] bán kính \[R\] là hình gồm các điểm

Xem đáp án » 29/12/2024 2

Câu 13:

II. Thông hiểu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 12{\rm{\;cm}}.\) Bán kính đường tròn đi qua ba đỉnh của tam giác đó bằng

Xem đáp án » 29/12/2024 2

Câu 14:

III. Vận dụng

Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng

Xem đáp án » 29/12/2024 2

Câu hỏi mới nhất

Xem thêm »
Xem thêm »