Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?
A. Đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\]
B. Tam giác \[OAB\] đều.
C. \[BC = 3\sqrt 3 \] cm.
D. Cả A, B, C đều đúng.
Đáp án đúng là: D
Gọi \[M\] là trung điểm \[OA.\]
⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]
Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.
⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:
\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])
Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)
Suy ra \[OB = AB\] (cặp cạnh tương ứng)
Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.
⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]
Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]
Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]
Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]
Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.
Vậy ta chọn phương án D.
Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn?
Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[K\] bất kì. Biết rằng \[OK = 7{\rm{\;cm}}.\] Khẳng định nào sau đây đúng?
Cho đường tròn \[\left( {O\,;R} \right)\] và một điểm \[G\] bất kì. Ta nói điểm \[G\] nằm trên đường tròn \[\left( {O\,;R} \right)\] nếu
Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là
Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?
Cho tam giác \[ABC\] nhọn có các đường cao \[BD,\,\,CE.\] Khẳng định nào sau đây là đúng?
Cho hình vuông \[ABCD\] có \[E\] là giao điểm của hai đường chéo. Kết luận nào sau đây sai?
Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng
Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]
II. Thông hiểu
Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 12{\rm{\;cm}}.\) Bán kính đường tròn đi qua ba đỉnh của tam giác đó bằng
III. Vận dụng
Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng