Tìm tất cả các giá trị thực của tham số m để f(x) = m(x–m) – (x–1) không âm với mọi x(–∞;m+1]
A. m = 1
B. m > 1
C. m 1
D. m ≥ 1
Chọn C
Ta có: f(x) ≥ 0 tương đương: (1)
+ Xét m = 1 thì (1) đúng với mọi x. (thỏa mãn)
+ Xét m > 1 thì ( 1) trở thành: x ≥ m+1không thỏa điều kiện nghiệm đã cho.
+ Xét m < 1 thì ( 1) trở thành: x ≤ m+1 thỏa điều kiện nghiệm đã cho.
Vậy m 1
Cho nhị thức bậc nhất f(x) = 23x – 20. Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình có nghiệm
Tập nghiệm của bất phương trình sau có bao nhiêu nghiệm nguyên âm?
Gọi S là tập tất cả các giá trị của x để f(x) = mx+ 6 – 2x – 3m luôn âm khi m < 2. Hỏi tập hợp nào sau đây là phần bù của tập S?