Giải hệ phương trình có nghiệm (x; y) là
A. (1; 2); (2; 1)
B. (1; −1); (2; 5)
C. (−2; 5); (1; 0)
D. (1; 2); (−2; 5)
Đáp án D
+) Xét y = 0 hệ phương trình đã cho trở thành (vô lý)
+) Xét y 0 chia các vế của từng phương trình cho y ta được:
Đặt
Cho hệ phương trình (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn
Cho hệ phương trình . Tìm m để có nghiệm duy nhất (x; y) sao cho biểu thức đạt giá trị nhỏ nhất
Cho hệ phương trình . Trong mọi trường hợp hệ có nghiệm duy nhất, tính x – y theo m
Cho hệ phương trình . Trong trường hợp hệ phương trình có nghiệm duy nhất (x; y), tìm điều kiện của m để x > 1 và y > 0
Cho hệ phương trình . Trong trường hợp hệ phương trình có nghiệm duy nhất (x; y), tìm hệ thức liên hệ giữa x, y không phụ thuộc vào m
Biết rằng hệ phương trình có nghiệm duy nhất với mọi m. Tìm nghiệm duy nhất đó theo m
Cho hệ phương trình . Có bao nhiêu giá trị của m để hệ phương trình có nghiệm thỏa mãn
Cho hệ phương trình (m là tham số). Tìm m để hệ có nghiệm duy nhất (x; y) thỏa mãn x + y = −3
Cho hệ phương trình . Trong trường hợp hệ phương trình có nghiệm duy nhất (x; y), tìm giá trị của m để 6x – 2y = 13
Cho hệ phương trình . Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là
Biết rằng hệ phương trình có nghiệm duy nhất với mọi m. Tìm nghiệm duy nhất đó theo m
Cho hệ phương trình (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn