Xét ba đường thẳng sau: 2x – y + 1 = 0; x + 2y – 17 = 0; x + 2y – 3 = 0. Chọn kết luận đúng:
A. Ba đường thẳng đồng qui.
B. Ba đường thẳng giao nhau tại ba điểm phân biệt
C. Hai đường thẳng song song, đường thẳng còn lại vuông góc với hai đường thẳng song song đó.
D. Ba đường thẳng song song nhau.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm M (1; 4) và song song với đường thẳng y = 2x + 1. Tính tổng S = a + b.
Tìm giá trị thực của m để hai đường thẳng d: y = mx − 3 và
Δ: y + x = m cắt nhau tại một điểm nằm trên trục tung.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm N (4; −1) và vuông góc với đường thẳng 4x – y + 1 = 0. Tính tích P = ab.
Tìm m để ba đường thẳng y = 2x – 3 (d1); y = x – 1 (d2); y = (m − 1)x + 2 (d3) đồng quy.
Cho hàm số bậc nhất y = ax + b. Tìm a và b, biết rằng đồ thị hàm số đi qua điểm M (−1; 1) và cắt trục hoành tại điểm có hoành độ là 5
Tìm tất cả các giá trị thực của m để hai đường thẳng d: y = mx − 3 và
Δ: y + x = m cắt nhau tại một điểm nằm trên trục hoành
Cho hàm số y = |2x − 4|. Bảng biến thiên nào sau đây là bảng biến thiên của hàm số đã cho
Cho hai đường thẳng y = 3x – 2 (d1) và y = 2mx + m – 1 (d2). Tìm giá trị m để (d1) cắt (d2) tại điểm có hoành độ bằng 2.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2017; 2017] để hàm số y = (m − 2)x + 2m đồng biến trên R.
Có bao nhiêu giá trị nguyên của m thuộc đoạn [0; 3] để hàm số
y = (m2 − 1)x đồng biến trên R.