Đường tròn đi qua A (2; 4), tiếp xúc với các trục tọa độ có phương trình là
A. ,
B. ,
C. ,
D. ,
Đường tròn (C) có tâm I (a; b), bán kính R có phương trình là (x − a)2 + (y − b)2 = R2
Ta có đường tròn (C) đi qua A (2; 4) nên ta có: (2 − a)2 + (4 − b)2 = R2 (1)
Đường tròn (C) tiếp xúc với các trục tọa độ, ta phải có |a| = |b| = R (2)
Trường hợp 1: Nếu a = b, thay vào (1) ta có
Với a = 2 ta có phương trình đường tròn (x − 2)2 + (y − 2)2 = 4
Với a = 10 ta có phương trình đường tròn (x − 10)2 + (y − 10)2 = 100
Trường hợp 2: Nếu a = −b, thay vào (1) ta có phương trình
(2 − a)2 + (4 + a)2 = a2 ⇔ a2 + 4a + 20 = 0: phương trình này vô nghiệm.
Vậy các đường tròn có phương trình , thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: A
Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x − 2y – 5 = 0 và các điểm A (1; 2), B (−2; 3), C (−2; 1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: nhỏ nhất
Trong mặt phẳng Oxy, cho tam giác ABC có A (−4; −1), hai đường cao BH và CK có phương trình lần lượt là 2x – y + 3 = 0 và 3x + 2y – 6 = 0. Viết phương trình đường thẳng BC và tính diện tích tam giác ABC
Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết AD = 2AB, đường thẳng AC có phương trình x + 2y + 2 = 0, D (1; 1) và A (a; b) (a, b ∈ R, a > 0). Tính a + b
Trong mặt phẳng tọa độ Oxy, tam giác ABC có đỉnh A (−1; 2), trực tâm H (−3; −12), trung điểm của cạnh BC là M (4; 3). Gọi I, R lần lượt là tâm, bán kính đường tròn ngoại tiếp tam giác ABC. Chọn khẳng định đúng trong các khẳng định sau
Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA2 + MB2 nhỏ nhất.
Cho đường tròn (C): x2 + y2 − 2x + 2y – 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2
Trong mặt phẳng tọa độ Oxy, cho ba điểm A (1; 0), B (0; 5) và C (−3; −5). Tìm tọa độ điểm M thuộc trục Oy sao cho đạt giá trị nhỏ nhất?
Trong mặt phẳng với hệ trục Oxy, cho hình vuông ABCD có tâm là điểm I. Gọi G (1; −2) và K (3; 1) lần lượt là trọng tâm các tam giác ACD và ABI. Biết A (a; b) với b > 0. Khi đó a2 + b2 bằng
Đường thẳng nào dưới đây tiếp xúc với đường tròn (x − 2)2 + y2 = 4, tại M có hoành độ xM = 3?
Trong mặt phẳng tọa độ Oxy, cho điểm M (4; 1), đường thẳng d qua M, d cắt tia Ox, Oy lần lượt tại A (a; 0), B (0; b) sao cho tam giác ABO (O là gốc tọa độ) có diện tích nhỏ nhất. Giá trị a − 4b bằng
Cho tam giác ABC có và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.
Cho hai điểm P (1; 6) và Q (−3; −4) và đường thẳng Δ: 2x – y – 1 = 0. Tọa độ điểm N thuộc Δ sao cho |NP − NQ| lớn nhất
Cho tam giác ABC nội tiếp đường tròn tâm I (2; 1), trọng tâm , phương trình đường thẳng AB: x – y + 1 = 0. Giả sử điểm C (x0; y0), tính 2x0 + y0
Cho tam giác ABC có diện tích bằng , hai đỉnh A (2; −3) và B (3; −2). Trọng tâm G nằm trên đường thẳng 3x – y – 8 = 0. Tìm tọa độ đỉnh C?