Tam thức bậc hai \[f\left( x \right) = {x^2} + \left( {1 - \sqrt 3 } \right)x - 8 - 5\sqrt 3 \]:
A.Dương với mọi \[x \in \mathbb{R}\].
B.Âm với mọi \[x \in \mathbb{R}\].
C.Âm với mọi \[x \in \left( { - 2 - \sqrt 3 ;1 + 2\sqrt 3 } \right)\]
D.Âm với mọi \[x \in \left( { - \infty ;1} \right)\]
Ta có\[f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2 - \sqrt 3 }\\{x = 1 + 2\sqrt 3 }\end{array}} \right.\]
Bảng xét dấu
Dựa vào bảng xét dấu\[f\left( x \right) < 0\, \Leftrightarrow \, - 2 - \sqrt 3 < x < 1 + 2\sqrt 3 \]
Đáp án cần chọn là: C
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\] có \[\Delta = {b^2} - 4ac < 0\]. Khi đó mệnh đề nào đúng?
Bảng xét dấu nào sau đây là của tam thức \[f\left( x \right) = \;{x^2} + 12x + 36\]?
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right).\] Điều kiện để f(x) >0\[,\forall x \in R\] là
Có bao nhiêu giá trị m nguyên âm để mọi x >0 đều thoả bất phương trình \[{\left( {{x^2} + x + m} \right)^2} \ge {\left( {{x^2} - 3x - m} \right)^2}\]?
Cho \[f\left( x \right) = a{x^2} + bx + c\,\left( {a \ne 0} \right)\]. Điều kiện để \[f\left( x \right) \le 0,\forall x \in R\;\] là
Cho các tam thức \[f\left( x \right) = 2{x^2} - 3x + 4;\,g\left( x \right) = - {x^2} + 3x - 4;\,h\left( x \right) = 4 - 3{x^2}\]. Số tam thức đổi dấu trên RR là:
Tam thức bậc hai \[f\left( x \right) = 2{x^2} + 2x + 5\] nhận giá trị dương khi và chỉ khi
Tìm tập xác định D của hàm số \[y = \sqrt {\frac{{{x^2} + 5x + 4}}{{2{x^2} + 3x + 1}}} \] là
Với giá trị nào của m thì bất phương trình \[{x^2} - x + m \le 0\] vô nghiệm?
Giá trị nào của m thì phương trình \[(m - 3){x^2} + (m + 3)x - (m + 1) = 0\;\left( 1 \right)\]có hai nghiệm phân biệt?
Tìm tất cả giá trị thực của tham số mm để hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 10x + 16 \le 0\,\,\,\left( 1 \right)}\\{mx \ge 3m + 1\,\,\,\left( 2 \right)}\end{array}} \right.\) vô nghiệm.
Bất phương trình \[\left( 1 \right) \Leftrightarrow - 8 \le x \le - 2.\] Suy ra\[{S_1} = \left[ { - 8; - 2} \right]\]
Tập nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4x + 3 >0}\\{{x^2} - 6x + 8 >0}\end{array}} \right.\) là
Với giá trị nào của m thì phương trình \[m{x^2} - 2(m - 2)x + 3 - m = 0\;\] có hai nghiệm trái dấu?
Với giá trị nào của a thì bất phương trình \[a{x^2} - x + a \ge 0\;\] nghiệm đúng với \[\forall x \in \mathbb{R}\;\]?