Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là:
A.\[x = \frac{{5\pi }}{6} + k2\pi \]
B. \[x = \frac{\pi }{6}\]
C. \[x = \frac{{5\pi }}{6}\]
D. \[x = \frac{\pi }{3}\]
Bước 1:
Ta có:\[\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}\]
Bước 2:
\(\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\end{array}} \right.(k \in Z)\)
Bước 3:
+) Xét\[x = \frac{\pi }{6} + k2\pi \]
Ta có\[ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{\pi }{6} + k2\pi \le \frac{\pi }{2}\]
\[\begin{array}{*{20}{l}}{ - \frac{{2\pi }}{3} \le k2\pi \le \frac{\pi }{3} \Leftrightarrow - \frac{{2\pi }}{{3.2\pi }} \le k \le \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{1}{3} \le k \le \frac{1}{6}}\end{array}\]
Mà\[k \in \mathbb{Z} \Rightarrow k = 0\] Thay vào x ta được:\[x = \frac{\pi }{6}\]
+) Xét\[x = \frac{{5\pi }}{6} + k2\pi \]
\[\begin{array}{*{20}{l}}{ - \frac{\pi }{2} \le x \le \frac{\pi }{2} \Leftrightarrow - \frac{\pi }{2} \le \frac{{5\pi }}{6} + k2\pi \le \frac{\pi }{2}}\\{ \Leftrightarrow - \frac{{4\pi }}{3} \le k2\pi \le - \frac{\pi }{3} \Leftrightarrow - \frac{{4\pi }}{{3.2\pi }} \le k \le - \frac{\pi }{{3.2\pi }}}\\{ \Leftrightarrow - \frac{2}{3} \le k \le - \frac{1}{6}}\end{array}\]
Mà\[k \in \mathbb{Z}\] nên không có giá trị k thỏa mãn
Vậy phương trình ban đầu có nghiệm duy nhất là\[x = \frac{\pi }{6}\]
Đáp án cần chọn là: B
Phương trình lượng giác \[\frac{{\cos x - \frac{{\sqrt 3 }}{2}}}{{\sin x - \frac{1}{2}}} = 0\] có nghiệm là:
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Phương trình \[\sqrt 3 \cot \left( {5x - \frac{\pi }{8}} \right) = 0\]có nghiệm là:
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Giải phương trình lượng giác \[\sin \left( {\frac{\pi }{3} - 3x} \right) = \sin \left( {x + \frac{\pi }{4}} \right)\] có nghiệm là:
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Số nghiệm của phương trình \[\cos 2x = \frac{1}{2}\] trên nửa khoảng \[({0^0};{36^0}]\;\]là?
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là: