Thứ năm, 19/12/2024
IMG-LOGO

Câu hỏi:

12/07/2024 118

Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\).

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?

3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?

Trả lời:

verified Giải bởi Vietjack

1) Điều kiện xác định: \(\left\{ \begin{array}{l}x - \sqrt x  \ne 0\\\sqrt x  - 1 \ne 0\\x \ge 0\\\sqrt x  + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ge 0\\\sqrt x  \ne  - 1\end{array} \right. \Leftrightarrow 0 < x \ne 1\)

Ta có: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right).\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}}\)

\( = \left[ {\frac{1}{{x - \sqrt x }} + \frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}} \right].\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}}\)

\( = \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}.\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}} = \frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  - 1}}{{\sqrt x }}\)

Vậy \(P = \frac{{\sqrt x  - 1}}{{\sqrt x }}\).

Cách 2: Đặt \(a = \sqrt x \) \(\left( {a \ge 0} \right)\)

Ta có: \(P = \left( {\frac{1}{{{a^2} - a}} + \frac{1}{{a - 1}}} \right):\frac{{a + 1}}{{{{\left( {a - 1} \right)}^2}}} = \left[ {\frac{1}{{a\left( {a - 1} \right)}} + \frac{1}{{a - 1}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}}\)

\( = \left[ {\frac{{1 + a}}{{a\left( {a - 1} \right)}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}} = \frac{{a - 1}}{a} = \frac{{\sqrt x  - 1}}{{\sqrt x }}\).

Nhận xét: Bài toán tìm điều kiện và rút gọn áp dụng quy tắc tìm điều kiện và các phương pháp phân tích đa thức thành nhân tử.                           

2) Với \(P = \frac{1}{3} \Leftrightarrow \frac{{\sqrt x  - 1}}{{\sqrt x }} = \frac{1}{3}\)

\( \Leftrightarrow 3\left( {\sqrt x  - 1} \right) = \sqrt x  \Leftrightarrow 2\sqrt x  = 3 \Leftrightarrow x = \frac{9}{4}\) (thõa mãn).

Nhận xét: Bài toán tìm giá trị của biến để biểu thức nhận một giá trị cho trước.

3) Ta có \(Q = P - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right)\)

Áp dụng bất đẳng thức Cô-si cho 2 số không âm \(\frac{1}{{\sqrt x }}\) và \(9\sqrt x \), tạ có:

\(\frac{1}{{\sqrt x }} + 9\sqrt x  \ge 2\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x }  = 2\sqrt 9  = 6\).

\( \Rightarrow Q \le 1 - 6 =  - 5\)

Dấu " = " xảy ra khi \(\frac{1}{{\sqrt x }} = 9\sqrt x  \Leftrightarrow 1 = 9x \Leftrightarrow x = \frac{1}{9}\)

Vậy \(\max P =  - 5\) khi \(x = \frac{1}{9}\).

Nhận xét: Bài toán tìm cực trị của biểu thức.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)

1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).

3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.

Xem đáp án » 25/06/2022 159

Câu 2:

1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)

2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5}  = 2x - 2\).

3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?

Xem đáp án » 25/06/2022 114

Câu 3:

Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?

Xem đáp án » 25/06/2022 105

Câu 4:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?

2) Cho hàm số \(y = mx + 1\) (1)

a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?

b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).

Xem đáp án » 25/06/2022 94

Câu hỏi mới nhất

Xem thêm »
Xem thêm »