Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?
Phương trình có hai nghiệm là \(x = - 1\) và \(x = 1\), thay vào phương trình ta được hệ
\(\left\{ \begin{array}{l} - 1 + a - b + c = 0\\1 + a + b + c = 0\end{array} \right.\)
Trừ hai phương trình trên, ta được: \( - 2 - 2b = 0 \Leftrightarrow b = - 1\)
Cộng hai phương trình trên, ta được: \(a + c = 0 \Leftrightarrow c = - a\)
Phương trình trở thành: \[{x^3} + a{x^2} - x - a = 0\]
\( \Leftrightarrow {x^2}\left( {x + a} \right) - \left( {x + a} \right) \Leftrightarrow \left( {x + a} \right)\left( {{x^2} - 1} \right) = 0\)
Theo giải thiết, phương trình có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\), khi đó phương trình \(x + a = 0\) phải có nghiệm là \( - 1\) hoặc 1, suy ra. \(a = 1\) hoặc \(a = - 1\).
Vậy các số a; b; c cần tìm là \(a = 1;b = - 1;c = - 1\) hoặc \(a = - 1;b = - 1;c = 1\).
Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)
1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.
2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).
3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.
Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)
2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5} = 2x - 2\).
3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?
2) Cho hàm số \(y = mx + 1\) (1)
a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?
b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).