Thứ năm, 19/12/2024
IMG-LOGO

Câu hỏi:

12/07/2024 114

1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)

2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5}  = 2x - 2\).

3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?

Trả lời:

verified Giải bởi Vietjack

1) Hệ phương trình tương đương với: \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3\left( {2 + z} \right) - 2\left( {2 + 3z} \right) + z = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\ - 8z - 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 1\\z =  - 1\end{array} \right.\)

Vậy hệ phương trình có nghiệm: \(\left( {x;y;z} \right) = \left( {1; - 1; - 1} \right)\).

2) Phương trình tương đương với: \(\left\{ \begin{array}{l}2x - 2 \ge 0\\2{x^2} + 3x - 5 = {\left( {2x - 2} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} + 3x - 5 = 4{x^2} - 8x + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} - 11x + 9 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left( {x - 1} \right)\left( {2x - 9} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\)

Vậy phương trình có nghiệm: \(x = 1;x = \frac{9}{2}\).

3)

+ Xét \(m - 1 = 0 \Leftrightarrow m = 1\), phương trình trở thành: \( - 6x + 2 = 0 \Leftrightarrow x = \frac{1}{3}\)

Do đó \(m = 1\) thỏa mãn.

+ Xét \(m - 1 \ne 0 \Leftrightarrow m \ne 1\) (*).

Để phương trình có nghiệm duy nhất thì \(\Delta ' = 0\)

\( \Leftrightarrow {\left[ { - \left( {m + 2} \right)} \right]^2} - \left( {m - 1} \right)\left( {m + 1} \right) = 0 \Leftrightarrow {\left( {m + 2} \right)^2} - \left( {{m^2} - 1} \right) = 0\)

\( \Leftrightarrow 4m + 5 = 0 \Leftrightarrow m =  - \frac{5}{4}\)  (thỏa mãn điều kiện (*))

Kết luận: \(m = 1\) hoặc \(m =  - \frac{5}{4}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)

1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).

3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.

Xem đáp án » 25/06/2022 158

Câu 2:

Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\).

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?

3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?

Xem đáp án » 25/06/2022 117

Câu 3:

Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?

Xem đáp án » 25/06/2022 104

Câu 4:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?

2) Cho hàm số \(y = mx + 1\) (1)

a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?

b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).

Xem đáp án » 25/06/2022 94

Câu hỏi mới nhất

Xem thêm »
Xem thêm »