Lúc 6 giờ sáng một ô tô khởi thành từ A để đi đến B. Đến 7 giờ 30 phút một ô tô thứ hai cũng khởi hành từ A để đi đến B với vận tốc lớn hơn vận tốc ô tô thứ nhất là 20km/h và hai xe gặp nhau lúc 10 giờ 30 phút. Tính vận tốc mỗi ô tô? (ô tô không bị hư hỏng hay dừng lại dọc đường).
Gọi vận tốc của ô tô thứ nhất là x (km/h) (ĐK: x > 0)
Vận tốc của ô tô thứ hai lớn hơn vận tốc của ô tô thứ nhất là 20km/h, nên vận tốc của ô tô thứ hai là: x + 20 (km/h).
Đến khi hai xe gặp nhau (lúc 10 giờ 30 phút):
- Thời gian đi của ô tô thứ nhất là:
10 giờ 30 phút – 6 giờ = 4 giờ 30 phút = giờ.
- Thời gian đi của ô tô thứ hai là:
10 giờ 30 phút – 7 giờ 30 phút = 3 giờ.
Khi đó, quãng đường ô tô thứ nhất đi được: (km)
Quãng đường ô tô thứ hai đi được: 3(x + 20) (km).
Theo đề bài, ta có phương trình:
x = 40 (TMĐK).
Vậy vận tốc của ô tô thứ nhất là 40 (km/h);
Vận tốc của ô tô thứ hai là 40 + 20 = 60 (km/h).
Cho biểu thức:
với x ≠ 3, x ≠ −3, x ≠ −7.
a) Rút gọn P.
b) Tính P khi |x – 1| = 2.
c) Tìm x để .
Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.
a) Chứng minh AE2 = EF.EK.
b) Kẻ .
Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD2.