IMG-LOGO

Câu hỏi:

20/07/2024 87

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và (α) là mặt phẳng chứa AM và song song với BD. Gọi E và F lần lượt là giao điểm của (α) với các cạnh SB,SD, gọi I là giao điểm của ME và BC,J là giao điểm của MF và CD. Nhận xét gì về ba điểm I,J,A?

A.Thẳng hàng

Đáp án chính xác

B.Cùng thuộc một đường tròn cố đinh.

C.Ba điểm tạo thành một tam giác

D.Đáp án khác

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là một điểm trên cạnh SC và  (ảnh 1)

Giả sử dựng được điểm E,F thỏa mãn yêu cầu bài toán.

Ta có\(\left\{ {\begin{array}{*{20}{c}}{EF = (\alpha ) \cap (SBD)}\\{(\alpha )\parallel BD}\\{BD \subset (SBD)}\end{array}} \right. \Rightarrow EF\parallel BD\)

Do đó các điểm E,F,A,M  cùng thuộc mặt phẳng (α).

Trong mặt phẳng (α), gọi \[K = EF \cap AM.\]

Ta có:\[K \in EF,EF \subset \left( {SBD} \right) \Rightarrow K \in \left( {SBD} \right).\]

\[K \in AM,AM \subset \left( {SAC} \right) \Rightarrow K \in \left( {SAC} \right) \Rightarrow K \in \left( {SBD} \right) \cap \left( {SAC} \right).\]

Mà\[\left( {SAC} \right) \cap \left( {SBD} \right) = SO\] với\[O = AC \cap BD \Rightarrow K \in SO.\]

Cách dựng E,F: Dựng giao điểm K  của AM  và SO . Qua K kẻ đường thẳng song song với BD cắt SB tại E  và cắt SD tại F .Do\(\left\{ {\begin{array}{*{20}{c}}{I = ME \cap BC}\\{I \in ME,ME \subset (\alpha ) \Rightarrow I \in (\alpha )}\\{I \in BC,BC \subset (ABCD) \Rightarrow I \in (ABCD)}\end{array}} \right.\)

Do đó\[I \in \left( \alpha \right) \cap \left( {ABCD} \right)\]

Tương tự ta cũng có\[J \in \left( \alpha \right) \cap \left( {ABCD} \right)\] và\[A \in \left( \alpha \right) \cap \left( {ABCD} \right)\]

Vậy I,J,A cùng thuộc giao tuyến của mp(α) và (ABCD).

Vậy I,J,A thẳng hàng.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM=\(\frac{2}{3}\)SD (minh họa như hình vẽ). Mặt phẳng chứa AM và song song với BD cắt cạnh SC tại K. Tỷ số \(\frac{{SK}}{{SC}}\) bằng

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 1)

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi điểm M là điểm thuộc cạnh SD sao cho SM= (ảnh 2)

Xem đáp án » 25/06/2022 177

Câu 2:

Cho hình lập phương ABCD.A′B′C′D′ cạnh aa. Các điểm M,N,P theo thứ tự đó thuộc các cạnh BB′,C′D′,DA sao cho \[BM = C\prime N = DP = \frac{a}{3}\]. Tìm diện tích thiết diện S của hình lập phương khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 25/06/2022 176

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB  và CD. Gọi I,J  lần lượt là trung điểm của các cạnh AD  và BC  và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)

Xem đáp án » 25/06/2022 172

Câu 4:

Cho tứ diện đều ABCD cạnh a . Gọi M  và P  lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \[MA = PC = x(0 < x < \frac{a}{2})\] . Mặt phẳng (α) đi qua MP  song song với CD cắt tứ diện theo một thiết diện là hình gì?

Xem đáp án » 25/06/2022 149

Câu 5:

Cho hình hộp ABCD.A′B′C′D′. Trên các cạnh AA′, BB′, CC′ lần lượt lấy ba điểm M, N, P sao cho \[\frac{{A'M}}{{{\rm{AA}}'}} = \frac{1}{3},\frac{{B'N}}{{BB'}} = \frac{2}{3},\frac{{C'P}}{{CC'}} = \frac{1}{2}\]. Biết mặt phẳng (MNP) cắt cạnh DD′ tại Q. Tính tỉ số \[\frac{{D'Q}}{{{\rm{DD}}'}}\]

Xem đáp án » 25/06/2022 149

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, \(SA = a\sqrt 3 ,SB = 2a\). Điểm M nằm trên đoạn AD sao cho AM=2MD. Gọi (P) là mặt phẳng qua M và song song với (SAB). Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).

Xem đáp án » 25/06/2022 132

Câu 7:

Cho hình lập phương ABCD.A′B′C′D′,AC và BD cắt nhau tại O,A′C′ và B′D′ cắt nhau tại O′ . Các điểm M,N,P  theo thứ tự là trung điểm của AB,BC,O′B′. Khi đó thiết diện do mặt phẳng (MNP)  cắt hình lập phương sẽ là đa giác có số cạnh là bao nhiêu?

Xem đáp án » 25/06/2022 131

Câu 8:

Cho hình chóp S.ABCD, G là điểm nằm trong tam giác SCD. E, F lần lượt là trung điểm của AB và AD. Thiết diện của hình chóp khi cắt bởi mặt phẳng (EFG) là

Xem đáp án » 25/06/2022 126

Câu 9:

Cho hình hộp ABCD.A′B′C′D′, gọi M là trung điểm CD, (P) là mặt phẳng đi qua M và song song với B′D và CD′. Thiết diện của hình hộp cắt bởi mặt phẳng (P) là hình gì?

Xem đáp án » 25/06/2022 113

Câu 10:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD  cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng (α) đi qua M và song song với SA,BD  cắt SO,SB,AB tại N,P,Q. Tứ giác MNPQ  là hình gì?

Xem đáp án » 25/06/2022 110

Câu 11:

Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn BC , đáy nhỏ AD.  Mặt bên (SAD) là tam giác đều, (α) là mặt phẳng đi qua M  trên cạnh AB , song song với SA,BC. Mp(α)cắt các cạnh CD,SC,SB lần lượt tại N,P,Q.MNPQ  là hình gì?

Xem đáp án » 25/06/2022 110

Câu 12:

Cho tứ diện ABCD có AB=a, CD=b. Gọi I, J lần lượt là trung điểm AB và CD, giả sử AB⊥CD. Mặt phẳng (α) qua M nằm trên đoạn IJ và song song với AB và CD Tính diện tích thiết diện của tứ diện ABCD với mặt phẳng (α) biết \[IM = \frac{1}{3}IJ\].

Xem đáp án » 25/06/2022 110

Câu 13:

Cho tứ diện ABCD có AB=6, CD=8. Cắt tứ diện bởi một mặt phẳng song song với AB, CD để thiết diện thu được là một hình thoi. Cạnh của hình thoi đó bằng

Xem đáp án » 25/06/2022 108

Câu 14:

Cho hình chóp S.ABCD  có đáy ABCD  là hình thang đáy lớn AB . Gọi M  là một điểm trên cạnh CD;(α) là mặt phẳng qua M  và song song với SA  và BC. Thiết diện của mp(α) với hình chóp là:

Xem đáp án » 25/06/2022 105

Câu 15:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=\(3a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

Xem đáp án » 25/06/2022 102

Câu hỏi mới nhất

Xem thêm »
Xem thêm »