IMG-LOGO

Câu hỏi:

17/07/2024 184

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

A.\[d = 1.\]

B. \[d = \sqrt 2 .\]

C. \[d = \frac{{2\sqrt 3 }}{3}.\]

D. \[d = \frac{{\sqrt {21} }}{7}.\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Gọi H là trung điểm AB, suy ra\[SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right).\]

Gọi E là trung điểm CD; K là hình chiếu vuông góc của H trên SE.

Ta có : \[HE \bot CD,SH \bot CD \Rightarrow CD \bot \left( {SHE} \right) \Rightarrow CD \bot HK\] mà \[HK \bot SE\] nên\[HK \bot \left( {SCD} \right)\]

Do AH//CD nên\(\)\[d\left( {A;\left( {SCD} \right)} \right) = d\left( {H;\left( {SCD} \right)} \right).\]

Khi đó \[d\left( {H;\left( {SCD} \right)} \right) = HK = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{\sqrt 3 }}{{\sqrt 7 }}.\]

Vậy\[d\left( {A;\left( {SCD} \right)} \right) = HK = \frac{{\sqrt {21} }}{7}.\]

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).Gọi H là trung điểm AB, suy ra\ (ảnh 1)

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 13/10/2022 203

Câu 2:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng \({60^ \circ }\). Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Xem đáp án » 13/10/2022 176

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 300. Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.

Xem đáp án » 13/10/2022 161

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 13/10/2022 139

Câu 5:

Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng

Xem đáp án » 13/10/2022 138

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên \(SA = \frac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).

Xem đáp án » 13/10/2022 129

Câu 7:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \(\frac{{a\sqrt {21} }}{6}\). Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC) .

Xem đáp án » 13/10/2022 127

Câu 8:

Cho tứ diện OABC có ba cạnh OA,OB,OC đôi một vuông góc với nhau. Biết khoảng cách từ điểm O đến các đường thẳng BC,CA,AB lần lượt là \(a,a\sqrt 2 ,a\sqrt 3 \). Khoảng cách từ điểm O đến mặt phẳng (ABC) là \(\frac{{2a\sqrt m }}{{11}}\). Tìm m.

Xem đáp án » 13/10/2022 104

Câu 9:

Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, SA=AB=a và AD=x.a. Gọi E là trung điểm của SC. Tìm x, biết khoảng cách từ điểm E đến mặt phẳng (SBD) bằng \(h = \frac{a}{3}\).

Xem đáp án » 13/10/2022 99

Câu 10:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh aa. Cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).

Xem đáp án » 13/10/2022 96

Câu 11:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \[AD = 2BC,\;AB = BC = a\sqrt 3 \]. Đường thẳng SA vuông góc với mặt phẳng (ABCD). Gọi E là trung điểm của cạnh SC. Tính khoảng cách d từ điểm E đến mặt phẳng (SAD).

Xem đáp án » 13/10/2022 87

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 13/10/2022 85

Câu hỏi mới nhất

Xem thêm »
Xem thêm »