Chọn kết luận đúng:
A.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
B.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R\;\] với mọi \[\alpha \in R\].
C.Hàm số \[y = {x^\alpha }\]có TXĐ \[D = R \setminus \left\{ 0 \right\}\] với mọi \[\alpha \in R\].
D.Hàm số \[y = {x^\alpha }\] có TXĐ \[D = \left( {0; + \infty } \right)\] với mọi \[\alpha \] không nguyên.
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R\] với mọi \[\alpha \] nguyên dương nên A và B sai.
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = R \setminus \left\{ 0 \right\}\] với mọi \[\alpha \] nguyên âm hoặc \[\alpha = 0\] nên C sai.
- Hàm số \[y = {x^\alpha }\] có TXĐ \[D = \left( {0; + \infty } \right)\] với mọi \[\alpha \] không nguyên nên D đúng.
Đáp án cần chọn là: D
Đẳng thức \[{\left( {\sqrt[n]{x}} \right)^\prime } = ({x^{\frac{1}{n}}})' = \frac{1}{n}{x^{ - \frac{{n - 1}}{n}}} = \frac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\] xảy ra khi:
Cho hàm số \[y = {\left( {x + 2} \right)^{ - 2}}\]. Hệ thức giữa y và y″ không phụ thuộc vào x là:
Cho aa là số thực tùy ý và b,c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số \[y = lo{g_b}x;y = lo{g_c}x;y = {x^a}(x > 0)\] Khẳng định nào sau đây đúng?
Cho hàm số \[f\left( x \right) = {\left( {{x^{1 + \frac{1}{{2{{\log }_4}x}}}} + {8^{\frac{1}{{3{{\log }_{{x^2}}}2}}}} + 1} \right)^{\frac{1}{2}}} - 1\] với \[0 < x \ne 1\]. Tính giá trị biểu thức \[P = f\left( {f\left( {2018} \right)} \right).\]
Cho aa là số thực tùy ý và b,c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số \[y = lo{g_b}x;y = lo{g_c}x;y = {x^a}(x > 0)\] Khẳng định nào sau đây đúng?
Cho hàm số \[y = {x^{e - 3}}\]. Trong các kết luận sau kết luận nào sai?
Cho hàm số \[y = f\left( x \right) = {\left( {{x^2} + x - 2} \right)^{\frac{2}{3}}}\]. Chọn khẳng định sai:
Xét hàm số \[y = {x^\alpha }\] trên tập \[\left( {0; + \infty } \right)\;\]có đồ thị dưới đây, chọn kết luận đúng:
Tìm TXĐ của hàm số \[y = {\left( {{x^3} - 27} \right)^{\frac{\pi }{2}}}\]