Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 115

Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng

A.\[\frac{{12}}{5}\]

B. \[\frac{5}{{12}}\]

C. \[\frac{{15}}{{16}}\]

D. \[\frac{{16}}{{15}}\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Điều kiện :

\[x\sqrt {{x^2} + 2} + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2} - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2} + x}} + 4 > 0\]

\[ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + \frac{{4\left( {\sqrt {{x^2} + 2} + x} \right)}}{{\sqrt {{x^2} + 2} + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2} > 0\] (vì \[\sqrt {{x^2} + 2} > x;\,\forall x\])

\[ \Leftrightarrow 2\sqrt {{x^2} + 2} > - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3x < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 3x \ge 0}\\{4({x^2} + 2) > {{( - 3x)}^2}}\end{array}} \right.}\end{array}} \right.\]</>

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{5{x^2} < 8}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\)

Khi đó ta có\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\log }_2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2} + x}}} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\end{array}\]

\[\begin{array}{l} \Leftrightarrow lo{g_2}(6x + 4\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2 + x} ) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}[2(3x + 2\sqrt {{x^2} + 2} )] - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}2 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow 1 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) + 3x + 2\sqrt {{x^2} + 2} \le lo{g_2}(\sqrt {{x^2} + 2} + x) + x + \sqrt {{x^2} + 2} ( * )\end{array}\]

Xét hàm số \[f\left( t \right) = t + {\log _2}t\,\] với t>0 ta có \[f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\,\forall t > 0\]  nên f(t) là hàm đồng biến trên\[\left( {0; + \infty } \right)\]Từ đó

\[\begin{array}{l}( * ) \Leftrightarrow f(3x + 2\sqrt {{x^2} + 2} ) \le f(\sqrt {{x^2} + 2} + x)\\ \Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x\\ \Leftrightarrow \sqrt {{x^2} + 2} \le - 2x\end{array}\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2x \ge 0}\\{{x^2} + 2 \le 4{x^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{3{x^2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{\left[ {\begin{array}{*{20}{c}}{x \ge \frac{{\sqrt 6 }}{3}}\\{x \le - \frac{{\sqrt 6 }}{3}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \le - \frac{{\sqrt 6 }}{3}\)

Kết hợp điều kiện \(\left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\) ta có\[ - \frac{{\sqrt {40} }}{5} < x \le - \frac{{\sqrt 6 }}{3}\] hay\[ - \sqrt {\frac{8}{5}} < x \le - \sqrt {\frac{2}{3}} \]

Tập nghiệm bất phương trình\[S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\] nên\[a = \frac{8}{5};b = \frac{2}{3} \Rightarrow a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\]

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án » 13/10/2022 223

Câu 2:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án » 13/10/2022 165

Câu 3:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

Xem đáp án » 13/10/2022 161

Câu 4:

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

Xem đáp án » 13/10/2022 153

Câu 5:

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

Xem đáp án » 13/10/2022 150

Câu 6:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

Xem đáp án » 13/10/2022 143

Câu 7:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Xem đáp án » 13/10/2022 137

Câu 8:

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

Xem đáp án » 13/10/2022 136

Câu 9:

Tập nghiệm của bất phương trình \[{\log _3}x \le {\log _{\frac{1}{3}}}(2x)\] là nửa khoảng \[(a;b]\]. Giá trị của \[{a^2} + {b^2}\;\] bằng

Xem đáp án » 13/10/2022 131

Câu 10:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

Xem đáp án » 13/10/2022 130

Câu 11:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án » 13/10/2022 126

Câu 12:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án » 13/10/2022 125

Câu 13:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 1)

Xem đáp án » 13/10/2022 117

Câu 14:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án » 13/10/2022 116

Câu 15:

Tìm tập hợp nghiệm S của bất phương trình: \[lo{g_{\frac{\pi }{4}}}({x^2} + 1) < lo{g_{\frac{\pi }{4}}}(2x + 4)\]

Xem đáp án » 13/10/2022 113

Câu hỏi mới nhất

Xem thêm »
Xem thêm »