IMG-LOGO

Câu hỏi:

10/07/2024 142

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

A.36

Đáp án chính xác

B.35

C.34

D.Vô số

Trả lời:

verified Giải bởi Vietjack

ĐK:\[{x^2} + 6x + 5 + m > 0.\]

\[\begin{array}{*{20}{l}}{{{\log }_7}\left( {{x^2} + 2x + 2} \right) + 1 > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow {{\log }_7}7\left( {{x^2} + 2x + 2} \right) > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m}\\{ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0}\\{ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0}\end{array}\]

Bất phương trình đã cho có tập nghiệm chứa (1;3)

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} + 6x + 5 + m > 0,\forall x \in (1;3)}\\{6{x^2} + 8x + 9 - m > 0,\forall x \in (1;3)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - {x^2} - 6x - 5,\forall x \in (1;3)}\\{m < 6{x^2} + 8x + 9,\forall x \in (1;3)}\end{array}} \right.\left( * \right)\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge \mathop {max}\limits_{[1;3]} f(x)}\\{m \le \mathop {min}\limits_{[1;3]} g(x)}\end{array}} \right.\end{array}\)

với\[f\left( x \right) = - {x^2} - 6x - 5\] và\[g\left( x \right) = 6{x^2} + 8x + 9\]

Ta có:\[f'\left( x \right) = - 2x - 6 = 0 \Leftrightarrow x = - 3 \notin \left( {1;3} \right)\] và\[f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = f\left( x \right)\] nghịch biến trên \[\left( {1;3} \right)\]

\[ \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = - 12 \Rightarrow m \ge - 12\]

\[g'\left( x \right) = 12x + 8 = 0 \Leftrightarrow x = - \frac{2}{3} \notin \left( {1;3} \right)\] và \[g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = g\left( x \right)\] đồng biến trên (1;3)

\[ \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23 \Rightarrow m \le 23\]

Vậy\[ - 12 \le m \le 23\]

Mà\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\] hay có\[23 - \left( { - 12} \right) + 1 = 36\] giá trị.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án » 13/10/2022 231

Câu 2:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án » 13/10/2022 170

Câu 3:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

Xem đáp án » 13/10/2022 169

Câu 4:

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

Xem đáp án » 13/10/2022 159

Câu 5:

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

Xem đáp án » 13/10/2022 158

Câu 6:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

Xem đáp án » 13/10/2022 150

Câu 7:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Xem đáp án » 13/10/2022 144

Câu 8:

Tập nghiệm của bất phương trình \[{\log _3}x \le {\log _{\frac{1}{3}}}(2x)\] là nửa khoảng \[(a;b]\]. Giá trị của \[{a^2} + {b^2}\;\] bằng

Xem đáp án » 13/10/2022 139

Câu 9:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án » 13/10/2022 138

Câu 10:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

Xem đáp án » 13/10/2022 138

Câu 11:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án » 13/10/2022 132

Câu 12:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án » 13/10/2022 123

Câu 13:

Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng

Xem đáp án » 13/10/2022 122

Câu 14:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 1)

Xem đáp án » 13/10/2022 122

Câu 15:

Tìm tập hợp nghiệm S của bất phương trình: \[lo{g_{\frac{\pi }{4}}}({x^2} + 1) < lo{g_{\frac{\pi }{4}}}(2x + 4)\]

Xem đáp án » 13/10/2022 121

Câu hỏi mới nhất

Xem thêm »
Xem thêm »