Cho \[0 < x < 1;0 < a;b;c \ne 1\]và \[lo{g_c}x > 0 > lo{g_b}x > lo{g_a}x\;\] so sánh a;b;ca;b;c ta được kết quả:
A.\[a > b > c\;\;\;\]
B.\[c > a > b\]
C.\[c > b > a\]
D.\[b > a > c\]
Vì\[0 < x < 1 \Rightarrow \ln x < 0\] Do đó
\[{\log _c}x > 0 > {\log _b}x > {\log _a}x \Leftrightarrow \frac{{\ln x}}{{\ln c}} > 0 > \frac{{\ln x}}{{\ln b}} > \frac{{\ln x}}{{\ln a}}\]
\[ \Rightarrow \ln c < 0 < \ln a < \ln b\]
Mà hàm số\[y = \ln x\] đồng biến trên\[\left( {0; + \infty } \right)\] nên ta suy ra\[c < a < b\]
Đáp án cần chọn là: D
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[a > 0,\,\,b > 0\] và \[ln\frac{{a + b}}{3} = \frac{{2lna + lnb}}{3}\]. Chọn mệnh đề đúng trong các mệnh đề sau:
Với a và b là hai số thực dương tùy ý, \[\log \left( {a{b^2}} \right)\] bằng
Đặt \[{\log _2}3 = a;{\log _2}5 = b\]. Hãy biểu diễn \[P = lo{g_3}240\;\] theo a và b.
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?