Đặt \[a = {\log _2}5\] và \(b = {\log _2}6\). Hãy biểu diễn \[lo{g_3}90\] theo a và b?
A.\[{\log _3}90 = \frac{{a - 2b + 1}}{{b + 1}}\]
B. \[{\log _3}90 = \frac{{a + 2b - 1}}{{b - 1}}\]
C. \[{\log _3}90 = \frac{{2a - b + 1}}{{a + 1}}\]
D. \[{\log _3}90 = \frac{{2a + b - 1}}{{a - 1}}\]
Có \[b = {\log _2}6 = 1 + {\log _2}3 \Rightarrow {\log _2}3 = b - 1\]
\[\begin{array}{l}{\log _3}90 = {\log _3}({3^2}.2.5) = 2 + {\log _3}2 + {\log _3}5 = 2 + \frac{1}{{{{\log }_2}3}} + \frac{{{{\log }_2}5}}{{{{\log }_2}3}} = 2 + \frac{{1 + {{\log }_2}5}}{{{{\log }_2}3}}\\ = 2 + \frac{{1 + a}}{{b - 1}} = \frac{{a + 2b - 1}}{{b - 1}}\end{array}\]Đáp án cần chọn là: B
Cho \[a > 0,b > 0\;\] thỏa mãn \[{a^2} + 4{b^2} = 5ab\]. Khẳng định nào sau đây đúng?
Biết \[{\log _{15}}20 = a + \frac{{2{{\log }_3}2 + b}}{{{{\log }_3}5 + c}}\] với a\[a,b,c \in \mathbb{Z}\]. Tính \[T = a + b + c\]
Đặt \[a = {\log _3}4,b = {\log _5}4\]. Hãy biểu diễn \[lo{g_{12}}80\] theo a và b
Cho \[a > 0,\,\,b > 0\] và \[ln\frac{{a + b}}{3} = \frac{{2lna + lnb}}{3}\]. Chọn mệnh đề đúng trong các mệnh đề sau:
Với a và b là hai số thực dương tùy ý, \[\log \left( {a{b^2}} \right)\] bằng
Đặt \[{\log _2}3 = a;{\log _2}5 = b\]. Hãy biểu diễn \[P = lo{g_3}240\;\] theo a và b.
Cho biểu\[P = \,{(\ln a\, + {\log _a}e)^2}\, + {\ln ^2}a - \log _a^2e\], với a là số dương khác 1. Mệnh đề nào dưới đây đúng ?