Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?
A.Trên khoảng (−1;1) thì f(x) đồng biến
B.Trên khoảng (−3;−1) thì f(x) nghịch biến
C.Trên khoảng (5;10) thì f(x) nghịch biến
D.Trên khoảng (−1;3) thì f(x) nghịch biến
\[f\left( x \right) = - 2{x^3} + 3{x^2} + 12x - 5 \Rightarrow f'\left( x \right) = - 6{x^2} + 6x + 12 = 0 \Leftrightarrow x = 2;x = - 1\]
Ta có: \[y' < 0,\forall x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\]nên hàm số nghịch biến trên các khoảng\[\left( { - \infty ; - 1} \right);\left( {2; + \infty } \right)\]và\[y' > 0,\forall x \in \left( { - 1;2} \right)\] nên nó đồng biến trên khoảng (−1;2).</>
Đối chiếu với các đáp án đã cho ta thấy các Đáp án A, B, C đều đúng vì các khoảng đó đều là khoảng nằm trong khoảng nghịch biến hoặc đồng biến của hàm số, chỉ có đáp án D sai.
Đáp án cần chọn là: D
Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:
Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị hàm số \[y = f\prime (x)\]như hình sau.
Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?
Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:
Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:
Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:
Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?
Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?
Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]
Bất phương trình có tập nghiệm là \[\left[ {a;b} \right].\;\]Hỏi tổng a+b có giá trị là bao nhiêu?
Cho hàm số y=f(x) có đồ thị như hình bên:
Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng: