Giá trị của tích phân \[\mathop \smallint \limits_0^{2017\pi } \sqrt {1 - \cos 2x} dx\] là
A.0.
B.\[ - 4043\sqrt 2 \]
C. \[2\sqrt 2 \]
D. \[4034\sqrt 2 \]
Do hàm số\[f(x) = \sqrt {1 - \cos 2x} = \sqrt 2 \left| {\sin x} \right|\] là hàm liên tục và tuần hoàn với chu kì\[T = \pi \] nên ta có
\[\int\limits_0^T {f(x)dx = } \int\limits_T^{2T} {f(x)dx = } \int\limits_{2T}^{3T} {f(x)dx = ... = \int\limits_{(n - 1)T}^{nT} {f(x)dx} } \]
\( \Rightarrow \int\limits_0^{nT} {f(x)dx = } \int\limits_0^T {f(x)dx + \int\limits_T^{2T} {f(x)dx + \int\limits_{2T}^{3T} {f(x)dx + ... + \int\limits_{(n - 1)T}^{nT} {f(x)dx} = } } } n\int\limits_0^T {f(x)dx} \)
\( \Rightarrow \int\limits_0^{2017\pi } {\sqrt {1 - cos2x} } dx\)
\( = 2017\int\limits_0^\pi {\sqrt {1 - cos2x} } dx\)
\( = 2017\sqrt 2 \int\limits_0^\pi {sinxdx = 4034\sqrt 2 } \)
Đáp án cần chọn là: D
Cho hàm số f(x) có đạo hàm trên \[\left[ {1;4} \right]\;\]và \[f\left( 1 \right) = 2,f\left( 4 \right) = 10\]. Giá trị của \[I = \int\limits_1^4 {f\prime (x)dx} \] là
Cho hàm số f(x) liên tục trên đoạn \[\left[ {a;b} \right].\]Chọn mệnh đề sai?
Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:
Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {0;1} \right],\;\]có \[\mathop \smallint \limits_0^1 \left[ {3 - 2f\left( x \right)} \right]{\rm{d}}x = 5.\]. Tính \[\mathop \smallint \limits_0^1 f\left( x \right){\rm{d}}x\].
Cho hàm số \[F\left( x \right) = \mathop \smallint \limits_1^x \left( {t + 1} \right)dt\]. Giá trị nhỏ nhất của F(x) trên đoạn \[\left[ { - 1;1} \right]\;\]là:
Cho biết \[\mathop \smallint \limits_1^3 f\left( x \right)dx = - 2,\mathop \smallint \limits_1^4 f\left( x \right)dx = 3,\mathop \smallint \limits_1^4 g\left( x \right)dx = 7\]. Chọn khẳng định sai?
Một ô tô đang đứng và bắt đầu chuyển động theo một đường thẳng với gia tốc \[a\left( t \right) = 6 - 3t\,\,\left( {m/{s^2}} \right)\] trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là:
Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn \[\left[ {0;1} \right].\;\]Đặt \[g\left( x \right) = 1 + 2\mathop \smallint \limits_0^x f\left( t \right)dt\]. Biết \[g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\] với mọi \[x \in \left[ {0;1} \right].\] Tích phân \[\mathop \smallint \limits_0^1 \sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}\,dx\]có giá trị lớn nhất bằng
Giả sử A,B là các hằng số của hàm số \[f(x) = Asin\pi x + B{x^2}\] Biết \[\mathop \smallint \limits_0^2 f\left( x \right)dx = 4\]giá trị của B là:
Tích phân \[I = \mathop \smallint \limits_0^{2\pi } \sqrt {1 + \sin x} dx\] có giá trị bằng
Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?
Giả sử hàm số y=f(x) liên tục trên \[\left[ {a;b} \right]\;\]và k là một số thực trên R. Cho các công thức:
a) \[\mathop \smallint \limits_a^a f\left( x \right)dx = 0\]
b) \[\mathop \smallint \limits_a^b f\left( x \right)dx = \mathop \smallint \limits_b^a f\left( x \right)dx\]
c) \[\mathop \smallint \limits_a^b kf\left( x \right)dx = k\mathop \smallint \limits_a^b f\left( x \right)dx\]
Số công thức sai là:
Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \[[0;\pi ]\]đạt giá trị bằng 0 ?
Tích phân \[I = \mathop \smallint \nolimits_0^{\frac{\pi }{2}} \frac{{4{{\sin }^3}x}}{{1 + \cos x}}dx\] có giá trị bằng
Nếu \[\mathop \smallint \limits_{ - 2}^0 \left( {4 - {e^{ - \frac{x}{2}}}} \right)dx = K - 2e\]thì giá trị của K là