Cho các số phức \[{z_1} = 3 - 2i,{z_2} = 1 + 4i\] và \[{z_3} = - 1 + i\;\] có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm A,B,C. Diện tích tam giác ABC bằng:
A.\[2\sqrt {17.} \]
B. 12
C. \[4\sqrt {13} \]
D. 9
Ta có\[{z_1} = 3 - 2i,{z_2} = 1 + 4i\] và\[{z_3} = - 1 + i\] có biểu diễn hình học trong mặt phẳng tọa độ Oxy lần lượt là các điểm A,B,C nên\[A\left( {3; - 2} \right);\,\,B\left( {1;4} \right);\,\,C\left( { - 1;1} \right).\]
Khi đó ta có:
\[\begin{array}{*{20}{l}}{AB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}} = 2\sqrt {10} }\\{AC = \sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {1 + 2} \right)}^2}} = 5}\\{BC = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {13} }\end{array}\]
Gọi p là nửa chu vi tam giác ABC ta có:\[p = \frac{{2\sqrt {10} + 5 + \sqrt {13} }}{2}.\]
Diện tích tam giác ABC là:\[{S_{{\rm{\Delta }}ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 9.\]
Đáp án cần chọn là: D
Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]
Cho số phức \[z = 2 + 5i\]. Tìm số phức \[w = iz + \overline z \]
Cho số phức z thỏa mãn \[(1 + i)z = 3 - i\]. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình bên ?
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \[{z_1} = - 1 + i,\;{z_2} = 1 + 2i,{z_3} = 2 - i,{z_4} = - 3i\]. Gọi S diện tích tứ giác ABCD. Tính S.
Cho số phức z thỏa mãn (2−i)z=7−i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình dưới.
Gọi M và N lần lượt là điểm biểu diễn của các số phức \[{z_1};{z_2}\;\] khác 0. Khi đó khẳng định nào sau đây sai ?
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?
Tập hợp các điểm trong mặt phẳng tọa độ biểu diễn số phức z thoả mãn điều kiện \[2\left| {z - i} \right| = \left| {z - \overline z + 2i} \right|\] là hình gì?
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức z thỏa mãn \[z.\overline z = 1\;\] là:
Cho các số phức \[{z_1} = 2,{z_2} = - 4i,{z_3} = 2 - 4i\] có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng
Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.
Hỏi hình nào biểu diễn cho số phức \[w = \frac{i}{{\overline z }}\]
Cho số phức z thỏa mãn \[{\left( {1 + z} \right)^2}\] là số thực. Tập hợp điểm MM biểu diễn số phức z là:
Trên mặt phẳng tọa độ, điểm M là điểm biểu diển của số phức z (như hình vẽ bên). Điểm nào trong hình vẽ là điểm biểu diển của số phức 2z?