Phương trình tham số của đường thẳng đi qua điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có VTCP \[\overrightarrow u = \left( {a;b;c} \right)\;\]là:
A.\(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)
B. \(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)
C. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)
D. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)
Đáp án cần chọn là: B
Đường thẳng \[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\] có một VTCP là:
Đường thẳng đi qua điểm \[\left( { - {x_0}; - {y_0}; - {z_0}} \right)\] và có VTCP (−a;−b;−c) có phương trình:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,0,0),B(0,3,0),C(0,0,−4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:
Điểm nào sau đây nằm trên đường thẳng \[\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}\]?
Trong không gian Oxyz, cho đường thẳng (d) đi qua \[{M_0}\left( {{x_0},{y_0},{z_0}} \right)\;\;\]và nhận \[\overrightarrow u = \left( {a,b,c} \right),\;\;{a^2} + {b^2} + {c^2} > 0\;\]làm một vecto chỉ phương. Hãy chọn khẳng định sai trong bốn khẳng định sau?
Cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\). Điểm nào trong các điểm dưới đây thuộc đường thẳng d?
Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?
Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\] và các điểm A(1;1;−1),B(−1;−1;1),\(C\left( {2;\frac{1}{2};0} \right)\). Chọn mệnh đề đúng:
Trong không gian Oxyz, cho hình bình hành ABCD với A(0,1,1), B(−2,3,1) và C(4,−3,1). Phương trình nào không phải là phương trình tham số của đường chéo BD.
Phương trình đường thẳng d đi qua điểm A(1;2;−3) và song song với trục OzOz là:
Trong không gian với hệ trục Oxyz, cho đường thẳng dd đi qua điểm M(2,0,−1) và có vecto chỉ phương \[\overrightarrow a = \left( {4, - 6,2} \right).\]Phương trình tham số của đường thẳng d là:
Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x - 3}}{1} = \frac{{y - 4}}{1} = \frac{{z - 5}}{{ - 2}}\;\] và các điểm \[A(3 + m;4 + m;5 - 2m),\;B\left( {4 - n;5 - n;3 + 2n} \right)\] với m,n là các số thực. Khẳng định nào sau đây đúng?
Trong không gian Oxyz, cho tam giác OAB với A(1;1;2),B(3;−3;0). Phương trình đường trung tuyến OI của tam giác OAB là
Trong không gian với hệ tọa độ Oxyz, phương trình tham số của đường thẳng \[{\rm{\Delta }}:\frac{{x - 4}}{1} = \frac{{y + 3}}{2} = \frac{{z - 2}}{{ - 1}}\] là: