Hình bình hành có một cạnh là 4, hai đường chéo là 6 và 8. Độ dài cạnh kề với cạnh có độ dài bằng 4 là:
Hướng dẫn giải
Đáp án đúng là B:
Hình bình hành có một cạnh là 4, hai đường chéo là 6 và 8 được mô tả như hình vẽ, do đó AD = 4, AC = 6, BD = 8.
Gọi O là giao điểm của hai đường chéo.
Khi đó O là trung điểm của AC và BD (tính chất hình bình hành).
Þ AO = 3 và DO = 4.
Áp dụng hệ quả định lí côsin vào tam giác ADO ta có:
Áp dụng định lí côsin vào tam giác ABD ta có:
AB2 = AD2 + BD2 – 2.AD.BD.
Þ AB2 = 42 + 82 – 2.4.8. = 34
Vậy độ dài cạnh kề với cạnh có độ dài bằng 4 của hình bình hành đó là
Tam giác ABC có ba cạnh lần lượt là: 2, 3, 4. Góc nhỏ nhất của tam giác có côsin bằng bao nhiêu?
Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, Tính số đo của biết là góc tù.
Tam giác ABC có AB = 10, AC = 24, diện tích bằng 120. Độ dài đường trung tuyến AM là:
Tam giác ABC vuông tại A có AB = AC = 30 cm. Hai đường trung tuyến BE và CF cắt nhau tại G. Diện tích tam giác GEC là:
Tam giác ABC có và BC = a. Tính bán kính đường tròn ngoại tiếp tam giác.
Bán kính đường tròn nội tiếp tam giác có ba cạnh lần lượt là 5, 12, 13 là:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Tỉ số là:
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng: